
A SEMANTIC TOUCH INTERFACE
FOR FLYING CAMERA PHOTOGRAPHY

by

LAN ZIQUAN

B.Comp. (Computer Science, NUS) 2013
B.Sci. (Applied Mathematics, NUS) 2013

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

in the

DEPARTMENT OF NUS GRADUATE SCHOOL
FOR INTEGRATIVE SCIENCES AND ENGINEERING

of the

NATIONAL UNIVERSITY OF SINGAPORE

2019

Supervisor:
Professor David HSU

Examiners:
Associate Professor Marcelo Jr. H. ANG

Assistant Professor Brian Y. LIM
Associate Professor Ping TAN, Simon Fraser University

Declaration

I hereby declare that this thesis is my original work and it has been written by me

in its entirety. I have duly acknowledged all the sources of information which have

been used in the thesis.

This thesis has also not been submitted for any degree in any university previ-

ously.

Ziquan Lan

31 Dec 2018

Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my thesis

advisor David Hsu for the guidance and support. His insights in Robotics have been

continuously guiding me even before my PhD study. David is also a life mentor who

is always supportive during my ups and downs. I am truly grateful.

Next, I would like to thank Shengdong Zhao and Gim Hee Lee for sharing with

me their insights in Human Computer Interaction and Computer Vision during the

project discussions. Their suggestions across different research fields enable me to

complete this interdisciplinary thesis. In addition, my special thanks goes to Wee

Sun Lee for his constructive feedback during the group meetings.

I also thank Marcelo Jr. H. Ang, Brian Y. Lim and Ping Tan for providing

constructive feedback to improve the quality of my thesis.

The members in our AdaComp Lab are a group of wonderful people. Mohit

Shridhar is my project partner. I will always remember the experiences when we

worked together towards those demo and paper deadlines. Also, I received tremendous

help from my labmates, Haoyu Bai, Andras Kupcsik, Nan Ye, Zhan Wei Lim, Kegui

Wu, Shaojun Cai, Min Chen, Juekun Li, Neha Garg, Yuanfu Luo, Wei Gao, Peter

Karkus, Xiao Ma, Panpan Cai, Devesh Yamparala, etc.

In addition, I have been also working among people from other research labs as

well. Experiences and ideas from different perspectives inspired me along the way. I

would like to thank the seniors, Nuo Xu, Ruofei Ouyang, Jinqiang Cui, Zhen Zhang

and my old friend Yuchen Li. I learnt a lot from them.

I would like to thank NUS Graduate School of Integrative of Science and Engi-

neering for providing me the scholarship, and NUS UAV group for the experimental

facilities.

i

I have a happy family since I was born. I am greatly indebted to my parents,

Zhiliang Lan and Meiling Yang, for their unconditional love. I also very grateful

to other family members for their support in general. Last but not least, to my

beloved wife, Yuwei Jin, who is always nourishing my life with her understanding and

encouragement.

ii

Abstract

Compared with handheld cameras widely used today, a camera mounted on a

flying drone affords the user much greater freedom in finding the point of view (POV)

for a perfect photo shot. In the future, many people may take along compact flying

cameras, and use their touchscreen mobile devices as viewfinders to take photos. To

make this dream come true, the interface for photo-taking using flying cameras has

to provide a satisfactory user experience.

In this thesis, we aim to develop a touch-based interactive system for photo-taking

using flying cameras, which investigates both the user interaction design and system

implementation issues. For interaction design, we propose a novel two-stage explore-

and-compose paradigm. In the first stage, the user explores the photo space to take

exploratory photos through autonomous drone flying. In the second stage, the user

restores a selected POV with the help of a gallery preview and uses intuitive touch

gestures to refine the POV and compose a final photo. For system implementation,

we study two technical problems and integrate them into the system development:

(1) the underlying POV search problem for photo composition using intuitive touch

gestures; and (2) the obstacle perception problem for collision avoidance using a

monocular camera.

The proposed system has been successfully deployed in indoor, semi-outdoor and

limited outdoor environments for photo-taking. We show that our interface enables

fast, easy and safe photo-taking experience using a flying camera.

iii

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 User Interfaces for Photo-taking . 1

1.2 Flying Camera Photography . 3

1.3 User Interactions for POV Navigation 6

1.3.1 Device-centric Techniques . 7

1.3.2 View-centric Techniques . 9

1.4 Outline . 11

2 System Design 13

2.1 User Interaction . 14

2.1.1 Interview Study . 14

2.1.2 Explore-and-Compose . 17

2.2 System Functions . 21

2.2.1 Object of Interest Selection 22

2.2.2 POV Sampling . 22

2.2.3 POV Restore . 23

iv

2.2.4 Direct View Manipulation . 23

2.3 Discussion . 23

2.3.1 Problem in Camera Localization 23

2.3.2 Problem in Object Tracking 24

2.3.3 Problem in Photo Composition 25

2.3.4 Problem in Collision Avoidance 25

3 POV Selection for Photo Composition 26

3.1 Two Objects Composition . 28

3.1.1 Related Work . 29

3.1.2 Problem Formulation . 30

3.1.3 P2P Solution in Closed Form 32

3.1.4 Evaluation . 44

3.1.5 Discussion . 49

3.2 Three or More Objects Composition 51

3.3 Summary . 52

4 Depth Perception for Collision Avoidance 53

4.1 Depth Map Construction . 55

4.1.1 Related Work . 55

4.1.2 Problem Formulation . 59

4.1.3 Depth Map Construction Pipeline 59

4.1.4 Evaluation . 62

4.1.5 Discussion . 63

4.2 Summary . 65

5 System Implementation 66

5.1 System Hardware and Software Setup 66

v

5.1.1 Hardware . 66

5.1.2 Software . 66

5.2 System Components . 67

5.2.1 Gesture Recognition . 67

5.2.2 Camera Localization . 68

5.2.3 Object Tracking . 68

5.2.4 Photo Composition . 70

5.2.5 Trajectory Planning . 70

5.2.6 Collision Avoidance . 72

5.2.7 Drone Control . 75

6 System Evaluation 77

6.1 Experimental Setup . 77

6.2 Interaction Design Evaluation . 78

6.2.1 Evaluation of POV Exploration 78

6.2.2 Evaluation of Visual Composition 79

6.2.3 Experimental Design . 79

6.2.4 Results . 80

6.3 System Performance Evaluation . 81

6.3.1 Evaluation of Photo-taking - Single Object of Interest 82

6.3.2 Evaluation of Photo-taking - Multiple Objects of Interest . . . 83

6.3.3 Experimental Design . 84

6.3.4 Results . 84

6.4 Discussion . 86

7 Conclusion 87

Bibliography 89

vi

List of Figures

1.1 Cameras from the past to the future 2

1.2 Compare a common joystick interface and XPose 4

1.3 An envisioned use case of XPose . 5

1.4 POV navigation technique classification 7

2.1 User intents for direct view manipulation 19

2.2 Exploration modes . 20

3.1 Information flow for photo composition component 27

3.2 Photos with two main objects of interest 28

3.3 Camera positions that satisfy constraints in Eq. (3.3) 32

3.4 The auxiliary frame FA . 33

3.5 Parameterization of c1
C
A using θ . 36

3.6 Optimal camera position candidates 40

3.7 Results from synthetic datasets . 45

3.8 Results from real robot experiments 48

3.9 The viewpoint changing process . 50

4.1 Portable flying cameras . 53

4.2 Information flow for collision avoidance component 54

4.3 Monocular depth perception . 57

vii

4.4 Monocular dense depth map construction 61

4.5 Nearby vertices that enclose a pixel 61

5.1 Overview of the system architecture 67

5.2 Information flow for gesture recognition component 68

5.3 Information flow for object tracking component 69

5.4 Information flow for trajectory planning component 70

5.5 Local depth map as a 3D point cloud 73

5.6 Aggregated occupancy grid map . 74

5.7 Local trajectory planning . 74

5.8 Information flow for drone control component 75

6.1 Interaction design evaluation setup 78

6.2 Performance comparison between the joystick interface and XPose in

interaction design evaluation . 80

6.3 System performance evaluation setup for photo-taking of one object of

interest . 82

6.4 System performance evaluation setup for photo taking of multiple ob-

jects of interest . 83

6.5 Performance comparison between the joystick interface and XPose in

overall system performance evaluation 84

viii

List of Tables

2.1 Main functions and system components 22

4.1 Results on Make3D dataset . 64

4.2 Results on KITTI dataset . 64

ix

Chapter 1

Introduction

1.1 User Interfaces for Photo-taking

User interfaces for photo-taking evolve together with the new characteristics of camera

devices, making photo-taking much easier and quicker. This evolution starts since two

centuries ago. In 1826, the first permanent photograph in the history of mankind was

taken by Joseph Nicphore Nipce [Gernsheim and Gernsheim, 1969]. The photo was

made using an 8-hour exposure on pewter coated with bitumen. Later, in 1839, the

Giroux daguerreotype camera (Fig. 1.1a) became the first commercially manufactured

camera. It was a double-box design, with a lens fitted to the outer box, and a holder

for a focusing screen on the inner box. To take a photo, the user needs to perform

many steps. First, slide the inner box to adjust the focusing screen for imagery

sharpness. Then, replace the screen with a sensitized plate. Next, release the shutter

made by a brass plate in the front of the lens. Finally, wait for 5 to 30 minutes of

exposure time. As time goes by, cameras evolve from cumbersome to portable, manual

to automated, analog to digital. For instance, the Single-Lens Reflex (SLR) camera

mechanisms were invented to enable us to view through the lens and see exactly

1

Chapter 1. Introduction

(d)(c)

(b)(a)

Figure 1.1: Cameras from the past to the future. (a) Giroux daguerreotype camera, the first
commercially manufactured camera. (b) Mode dial on a Digital Single-Lens Reflex (DSLR)
camera. (c) Photo-taking application on a mobile phone. (d) Parrot Bebop flying camera.

what will be captured, which greatly increased the chance of taking good photos. In

addition, the mode dials (Fig. 1.1b) used in most Digital Single-Lens Reflex (DSLR)

cameras today allow us to quickly change the camera settings according to different

photo-taking scenarios. Furthermore, the mobile phone cameras reduce our efforts on

taking a shot and require only a single button click (Fig. 1.1c).

These improvements on camera user interfaces make photo-taking a common daily

activity. However, traditional hand-held cameras require human to carry around

while finding the point of view (POV) for a perfect photo shot, which inherently

2

Chapter 1. Introduction

limits the cameras’ physical reachability and viewpoint coverage. This limitation

can be overcome using a flying camera, i.e., a camera mounted on a flying platform

(Fig. 1.1d). In this thesis, we aim to further elevate the usability of cameras with the

new flying capability.

1.2 Flying Camera Photography

Taking photos with a flying device is not a new concept. As early as the 1860s, bal-

loons, kites and trained pigeons were used to carry cameras for airborne photography.

Later, in the early 1900s, airplanes and dirigibles were invented and used. Today, with

the advances of miniaturized flying drones, flying cameras are no longer exclusive to

the professional users. In the future, many people may take along compact flying

cameras, and use their touchscreen mobile devices as viewfinders to compose favor-

able shots. Although many drone related accessories and gadgets are available in the

commercial market, such as combining a joystick with a virtual reality headset to

support a firstperson shooter experience, we envision that using a flying camera shall

be as easy and natural as using a mobile phone camera today. This thesis proposes a

touch-based prototype flying camera interface based on a Parrot Bebop quadcopter

(Fig. 1.1d).

Our envisioned flying camera is conceptually not a drone fitted with a camera, but

a camera with flying capability. The difference between the two lies in their mental

models of interaction. The former implies a model of interacting with two separate

devices, a drone, and a camera. The user first pilots the drone painstakingly through

a joystick or an emulated joystick interface on a touchscreen (Fig. 1.2a) in order to

reach a desired POV, and then operates the camera to take a photo. Most drone-

mounted cameras today adopt this model. By contrast, we seek a unified interaction

model for a camera capable of flying. The details of drone control are transparent to

3

Chapter 1. Introduction

(a) (b)

Figure 1.2: Compare a common joystick interface and XPose. (a) The left joystick controls the
drone’s heading direction and altitude. The right joystick controls its translational movement
along or orthogonal to the heading direction. (b) With XPose, the user interacts directly with
the image contents, such as selecting an object of interest by drawing a circle.

the user, making the flying camera more intuitive and easier to use. To realize such a

unified interaction model for photo-taking, we introduce the concept of photo space. It

is defined as the collection of all possible photographs taken for a target scene. Photo-

taking becomes a searching problem that looks for a small set of camera views in the

entire photo space. In this thesis, we assume the scene is static or almost static, which

covers many genres of photography, such as architectural, still life, portrait scenic,

etc. Furthermore, we assume each POV produces a unique photo. In other words,

each photo is determined only by the camera’s extrinsic parameters that define the

camera’s poses. It is not critical to consider the intrinsic parameters or the internal

settings, such as focal length, camera distortion, frame shape and filter style, since

those effects can be achieved easily during the post-production process using an image

editing software, such as Photoshop.

The development of an interactive system is challenging. The challenges lie in

the interplay between interaction design and system implementation. From the in-

teraction design perspective, efficiently searching the infinite photo space is a hard

problem in itself. From the system implementation perspective, a light-weight drone

4

Chapter 1. Introduction

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.3: An envisioned use case of XPose. (a) Select an object of interest with the encircle
gesture. (b) Activate the Orbit exploration mode. (c) The drone-mounted camera takes sample
photos while orbiting the object of interest autonomously. (d) Enter the gallery preview. (e)
Browse sample photos in the gallery. (f) Restore a POV associated with a selected sample
photo. (g) Compose a final shot by dragging selected objects of interest to desired locations in
the photo. (h) Take the final shot. (i) The final photo.

such as the Parrot Bebop has a severe restriction on the payload and carries only a

single forward-facing main camera with a very limited field of view. With a single

monocular camera, the system needs to localize the camera with respect to objects

of interest, track objects reliably, and avoid collision with obstacles.

We present a touch-based interactive system, named XPose, which investigates

both the user interaction design and system implementation issues. For interaction

design, XPose proposes a novel two-stage eXplore-and-comPose paradigm for efficient

and intuitive photo-taking. In the explore stage, the user first selects objects of inter-

5

Chapter 1. Introduction

est (Fig. 1.3a) and the interaction mode (Orbit, Pano, and Zigzag) on a touchscreen

interface (Fig. 1.3b). The camera then flies autonomously along predefined trajecto-

ries and visits many POVs to take exploratory photos (Fig. 1.3c). The sample photos

are presented as a gallery preview (Fig. 1.3d,e). The user taps on a potentially in-

teresting preview photo and directs the drone to revisit the associated POV in order

to finalize it (Fig. 1.3f). In the compose stage, the user composes the final photo

on the touchscreen, using familiar dragging gestures (Fig. 1.3g). The camera flies

autonomously to a desired POV (Fig. 1.3h), instead of relying on the user to pilot

manually.

Based on the design requirements in the explore-and-compose paradigm, we iden-

tify seven main system components for system implementation: gesture recognition,

camera localization, object tracking, photo composition, trajectory planning, colli-

sion avoidance, and drone control. In the context of flying camera photography, the

problems of photo composition and collision avoidance are crucial. In this thesis,

we further investigate these two system components. More specifically, we study the

underlying POV selection problem for photo composition using intuitive touch ges-

tures, and the obstacle perception problem for collision avoidance using a monocular

camera.

In summary, we integrate interaction design and flying camera autonomy to pro-

vide an intuitive touch interface so that the user interacts with photos directly and

focuses on photo-taking instead of drone piloting.

1.3 User Interactions for POV Navigation

POV navigation can be achieved by manipulating the camera pose and/or interacting

with the camera view.Based on the modalities, we categorize different user interac-

tions into device-centric techniques and view-centric techniques (Fig. 1.4). Device-

6

Chapter 1. Introduction

POV navigation
techniques

Device-centric
techniques

View-centric
techniques

Local movement
techniques

Global movement
techniques

Figure 1.4: POV navigation technique classification.

centric techniques focus more on manipulating the device pose, while view-centric

techniques focus more on showing a user intended image view. In the context of pho-

tography, view-centric techniques are more preferable over device-centric techniques.

It is more intuitive to specify how the view looks like than figuring out which camera

pose produces such a view. However, device-centric techniques are dominantly used

today on both hand-held and flying cameras. Using hand-held cameras, the user has

to manipulate their poses, as they inherently do not have the capability of moving

themselves. Flying cameras are essentially flying robots, so device-centric techniques

are relatively easy to implement, which is as common as teleoperating other robots

with remote controllers.

1.3.1 Device-centric Techniques

Device-centric techniques can be further subdivided into techniques for local and global

movements (Fig. 1.4). Their difference lies in the amount of information required from

the environment. Local movements require no or very limited information, while

global movements require structural information from the environment.

7

Chapter 1. Introduction

Local Movement Techniques Local movements usually refer to pan, tilt, dolly,

truck and pedestal camera motions. Photographers with hand-held cameras practice

these local movements unintentionally. These camera motions have been transferred

into the virtual environment to navigate a POV via walking/driving/flying metaphors

[Ware and Osborne, 1990; Bowman et al., 1997]. For consumer drones fitted with

cameras, the most common interface for POV navigation is probably a touchscreen

with emulated joysticks (Fig. 1.2a). The user watches a live video feed from the

drone-mounted camera and commands the drone to perform local movements through

the joysticks. This approach, which combines joysticks and live video feedback, is

also common for teleoperation of remote vehicles [Ballou, 2001; Hainsworth, 2001].

Experiences there suggest that manual control through the joysticks faces several

difficulties. The low-level motion control afforded by the joysticks is tedious. Further,

operating the drone through only the video feed often results in loss of situational

awareness, inaccurate attitude judgment, and failure to detect obstacles [McGovern,

1991].

Another commonly used local movement is rotate (also referred to as orbit, tum-

ble or sweep), which is a standard technique for inspecting a target in the virtual

environment, such as Autodesk’s 3DS MAX and Maya. The rotate movement only

requires the target position to determine the center of rotation and remain a constant

distance to it. This is easily obtained in the virtual environment. Similarly, GPS

tracking devices [Lily-Next-Gen, 2017] are widely used to enable the flying camera’s

orbiting movement. However, the GPS may be unavailable or unreliable in indoor

environments and urban canyons. Further, GPS maps do not supply the visual in-

formation required by the user to identify attractive POVs for photo composition.

Besides GPS, image-based tracking algorithms [Skydio-R1, 2018] are used as well.

However, existing image-based tracking algorithms are not robust against large view-

ing angle changes in the process of orbiting around [Kalal et al., 2012].

8

Chapter 1. Introduction

Global Movement Techniques Global movements specify camera poses using struc-

tural information of the environment. Commonly used structural information is a

coordinate system or a map. In virtual environments, the user can specify a precise

camera pose in the global coordinate. Similarly, GPS satellite map is used to guide

drones to fly to particular GPS locations [DJI, 2018a; Bebop, 2018].

Another way to use structural information is to guide the camera movement by

constraining its motion. For example, virtual tours have been created in virtual

environments. The camera moves along a predefined trajectory automatically while

allowing users to deviate locally form the tour [Galyean, 1995; Elmqvist et al., 2008].

Such a tour is conceptually a 1-dimensional constraint. A 2-dimensional constraint

is called a “guide manifold” [Hanson and Wernert, 1997; Burtnyk et al., 2002; Khan

et al., 2005] that constrains the camera movement along some specially designed 2-

dimensional subspace. Constraining the motion of a flying camera has been realized

through a decoupled plan-and-execute paradigm [Joubert et al., 2015; Gebhardt et

al., 2016]. POV trajectory planning occurs offline and relies on a given 3D virtual

model of the real-world environment. Then, the drone carries the camera to execute

the planned trajectory. This decoupled plan-and-execute paradigm implies a slow

interaction cycle and is not quite suitable for photo-taking in real-time. Moreover,

the acquisition of accurate 3D models is also a major challenge in itself and remains

an active area of research [Fuentes-Pacheco et al., 2012; Marder-Eppstein, 2016].

1.3.2 View-centric Techniques

As aforementioned, photo-taking using view-centric techniques is more intuitive than

using device-centric techniques. Unfortunately, view-centric techniques for photogra-

phy have not been drawn much attention. Nevertheless, many view-centric techniques

have been studied and applied to the virtual camera that is similar to the flying

9

Chapter 1. Introduction

camera in many aspects. They both can hover in the space and move agilely and

autonomously. It is worthy to notice that many device-centric techniques have been

applied to both the virtual camera and the flying camera due to their similarities.

View-centric techniques move a POV autonomously based on user intent. A com-

mon approach is to communicate user intent with respect to a point of interest (POI).

Estimating a user intended POV with respect to a POI was firstly proposed in the

Point of Interest Logarithmic Flight technique [Mackinlay et al., 1990] that moves the

virtual camera towards and face the POI. Instead of directly facing the POI, UniCam

[Zeleznik and Forsberg, 1999] proposes to estimate the camera orientation according

to the proximity of the edges of some objects. Rather than estimating a user intended

POV, Navidget [Hachet et al., 2008] provides direct and real-time visual feedback us-

ing a 3D widget coupled with a preview window so that the user can select a POV

while moving a cursor on the 3D widget.

Another view-centric technique is to manipulate the screen-space projection of a

scene in the camera view directly, i.e., direct manipulation. Direct manipulation in

screen-space [Gleicher and Witkin, 1992; Reisman et al., 2009; Walther-Franks et al.,

2011] allows the user to specify desired object positions on the screen. The virtual

camera is autonomously controlled so that the selected objects on the screen always

stick to the corresponding device pointers, for example, fingertips. A different but

related application of direct view manipulation is video browsing [Satou et al., 1999;

Dragicevic et al., 2008; Karrer et al., 2008]. Since a video can be seen as a sequence

of camera views produced by a fixed trajectory of camera poses, a desired camera

view can be found by directly dragging the objects in the video content.

View-centric techniques developed for virtual cameras cannot be directly applied

to physical flying cameras. Their fundamental difference lies in their moving speeds,

which greatly affects their feedback cycles. In the virtual environment, the user

interface is able to respond to rapid user inputs. In particular, the 3D widget of

10

Chapter 1. Introduction

Navidget corresponds to a collection of all possible views with respect to the target.

When the mouse cursor moves on the virtual widget, the corresponding camera view is

rendered in the preview window in real-time. By contrast, the physical flying camera

cannot afford to provide real-time visual feedback with such a rapid rate, because the

camera has to physically fly from one POV to another with limited traveling speed.

In this thesis, we propose the explore-and-compose paradigm, a view-centric POV

navigation technique for flying camera photography. Furthermore, we investigate the

complete interactive system that aids the user for real-time photo-taking without a

3D model given a priori.

1.4 Outline

The rest of the thesis is organized as follows.

Chapter 2 presents the system design. First, we start with an interview study

with photographers and drone flyers to understand the design objective and introduce

the two-stage explore-and-compose paradigm in detail. Then, we analyze the main

system functions in the interactive paradigm and identify the required main system

components to implement each function.

Among the main system components, photo composition (Chap. 3) and collision

avoidance (Chap. 4) are crucial in the context of flying camera photo-taking. We

further investigate them respectively. In Chapter 3, we investigate the underlying

POV search problem for photo composition using intuitive touch gestures. We focus

on a common situation in photo-taking, i.e., composing a photo with two objects

of interest. We model it as a Perspective-2-Point problem, formulate a constrained

nonlinear optimization problem, and solve it in closed form. Experiments on both

synthetic datasets and the Parrot Bebop flying camera are reported. In addition, we

propose a sample-based POV search method for composing a photo with three or

11

Chapter 1. Introduction

more objects of interest. Next, in Chapter 4, we investigate the obstacle perception

problem for collision avoidance using monocular cameras. To perceive obstacles, we

propose an algorithm to estimate a dense and accurate depth map for each image

frame, which combines the strengths of both the geometry-based approach and the

data-driven approach to depth estimation. Our depth map estimation algorithm

is evaluated with datasets of real images, and implemented for collision-free path

planning with the Parrot Bebop flying camera.

Chapter 5 and Chapter 6 present the system implementation and evaluation re-

spectively. Chapter 5 shows the implementation details of the main system compo-

nents. Chapter 6 reports the evaluation results for both interaction design and system

performance on photo-taking tasks.

Finally, in Chapter 7, we summarize the main results and point out directions for

future research.

12

Chapter 2

System Design

Flying cameras have produced extraordinary photos, with POVs rarely reachable

otherwise [Dronestagram, 2017], and endeared themselves to amateur and professional

photographers alike. While today flying cameras remain the toys of hobbyists, in the

future many people may carry compact drones in pockets [AirSelfie, 2018] or even wear

them on the wrists [Flynixie, 2018]. They release the drones into the sky for photo-

taking and use their touchscreen mobile phones as viewfinders. This chapter presents

the overall design of the flying camera we dreamed of, with the goal of investigating

the underlying user interaction design and system implementation issues.

To explore the interaction design requirements, we started with an interview study

with photographers and drone flyers (Sec. 2.1.1), and identified the main objective of

helping the user to explore POVs efficiently while avoiding the perception of latency

when the camera transitions between POVs. We propose the novel two-stage explore-

and-compose paradigm that was briefly introduced in Sec. 1.2, which is described with

more details later, in Sec. 2.1.

Further, to realize the proposed explore-and-compose design paradigm, XPose is

implemented based on the Parrot Bebop quadcopter. The interactive system consists

13

Chapter 2. System Design

of seven main components conceptually (Sec. 2.2): gesture recognition, camera local-

ization, object tracking, photo composition, trajectory planning, collision avoidance,

and drone control.

In this chapter, we show the details of the system design for both user interaction

(Sec. 2.1) and system components (Sec. 2.2). In the end, we discuss the problems

encountered in the system implementation life-cycle and the choices made.

2.1 User Interaction

2.1.1 Interview Study

To explore the requirements of effective user interactions with a flying camera, we

conducted in-depth semi-structured interviews. The group of interviewees consists

of 8 photographers (3 professional and 5 amateur) and 2 professional drone fly-

ers/instructors. They are recruited via social network referrals. For photographers,

our questions focused on their main considerations when taking photos and how

drone-mounted cameras can potentially help. For drone flyers/instructors, our ques-

tions focused on their experience with using drones for photo/video taking and how

they train novice users. Each interview session lasted from 30 minutes to an hour.

All interviews were transcribed into text for qualitative analysis. We briefly show our

findings below.

2.1.1.1 Opportunities for flying cameras

Both the professional photographers and the photography hobbyists mentioned a sim-

ilar set of important aspects in photo-taking, including POV, lighting, visual com-

position, and the choice of equipment (with different focal features, shutter speeds,

etc.), post-editing and so on.

14

Chapter 2. System Design

In terms of how a drone can help them taking photos, all professional photogra-

phers point out the potential for drones to find and discover interesting POVs that

are normally difficult to reach.

P1, is a professional bird photographer, envisioned the help from a drone to iden-

tifying unblocking viewpoint of a bird hidden in trees, which will be much easier and

safer approaching than using ladders or climbing trees.

P2, who loves to explore nature, suggested that the drone can be an effective

tool to explore the possible POVs in a relatively complex landscape such as in the

mountain or valley where there are many barriers that block the view.

P3, the only professional photographer with drone flying experience, commented

that drones can be very useful to take photos of very large objects, such as houses,

churches, boats. In addition, he mentioned that manually controlling drone while

trying to take photos can be a difficult task.

In addition to the suggestions by the professionals, the hobbyists have also made a

few interesting suggestions, including taking selfies for a large group of people, taking

travel photos of a subject of interest in tourist scenes from a higher angle to avoid

unwanted trespassing tourists, etc.

2.1.1.2 Challenges with existing flying cameras user interfaces

As an expert drone photographer, P4 explained that the current common practice

follows a decoupled plan-and-execute paradigm (Sec. 1.3.1). To take a photo, the first

step is to pre-program a flight plan using a GPS map. While the drone is executing the

flight plan, its onboard camera’s orientation is manually controlled using a joystick.

However, this is not easy as the drone pilot has no visual overview of the scene before

the drone arrives.

The lack of a visual overview is caused by two factors. First, the onboard camera

offers a narrow field of view, limiting the photographers ability to comprehend the

15

Chapter 2. System Design

scene. Second, the aerial scene can only be viewed during the flight, and not before.

Conducting reconnaissance (preliminary visual scouting) for an aerial is far more

challenging than reconnoitering for a shot on the ground because of these two factors.

Therefore, taking photos with drones involves many unsuccessful attempts since it

can be difficult to previsualize what the photo will look like.

In addition, pre-programming and manual control can be tedious and complex.

A professional drone usually requires sophisticated pre-programming procedures and

many degrees-of-freedom of manual controls. Furthermore, some professional drones

even require two operators using two separate sets of joysticks to control a single

drone. One takes charge of drone flying, and the other focuses on photo/video taking

[DJI, 2018b].

P4 also pointed out some practical limitations of drones. Unfortunately, a photog-

raphers photo-taking time is limited by the drone’s battery power. Usually, the pilot

only has a handful number of flight attempts before the drone must be returned for

recharging. This means that the appropriate POV for a desired shot must again be

found during the next attempt. To increase the likelihood of success, drone photogra-

phers carefully pre-program the flight plan before flying the drone. Being a proficient

pilot helps to reduce errors in piloting the drone and increase the chance of taking

better photos.

However, learning to pilot a drone professionally is not an easy task. A significant

amount of training is required. P5 is a drone pilot trainer who described the typical

training program he conducts to us. He typically runs an introductory course that

lasts for two days. The first day has five one-hour sessions to learn how drones work,

how to use joysticks and how to use the flight training simulator. On the second

day, the trainees practice flying under the tutelage of the trainers. Learners first

learn from flying with the simulators. However, even after hours of training on the

simulator, most novices will still crash their drones during a real practice. Both P4

16

Chapter 2. System Design

and P5 mentioned that it took them about one year of frequent practice to achieve

their current proficiency levels.

2.1.1.3 Summary

In summary, the photographers’ responses suggest a set of well-established considera-

tions for photo-taking: POVs, visual composition, lighting conditions, shutter speed,

depth of field, etc. They also point to the potential for drone-mounted cameras to

discover novel POVs. The drone flyers/instructors’ responses include lengthy prepara-

tions for drone photo/video taking sessions and extensive training required for novice

users. These led to our design objective of a simple, intuitive interface for efficiently

exploring many POVs and directly manipulating the visual composition.

2.1.2 Explore-and-Compose

With traditional hand-held cameras, the user explores POVs by moving around and

looking through the viewfinder. Limited by the user’s physical movements, the ex-

ploration of POVs is local, but the visual feedback is almost instantaneous. The

joystick touchscreen interface tries to reproduce this experience for flying cameras:

the joysticks control the camera’s local movements, and the touchscreen provides vi-

sual feedback. However, this approach does not account for the difference in device

characteristics between hand-held cameras and flying cameras. The camera’s ability

to fly offers the opportunity of exploring POVs more globally. At the same time, it

is more difficult for a flying camera to achieve an intended POV precisely, due to air

disturbance and other factors. Further, visual feedback is not instantaneous, because

of the communication delay between the flying camera and the user’s mobile device.

We introduce a two-stage explore-and-compose paradigm, which enables the user

to explore a wide range of POVs efficiently in a hierarchical manner. In the explore

17

Chapter 2. System Design

stage, the user samples many POVs globally at a coarse level, through autonomous

drone flying. In the compose stage, the user chooses a sampled POV for further

refinement and composes the final photo on the touchscreen by interacting directly

with objects of interest in the image.

We now illustrate our approach in detail with a concrete scenario (Fig. 1.3). Our

main character, Terry, walks along a river on a sunny day and stops at a white statue.

She wishes to take a photo of the statue, but can hardly get a close-up shot with a

hand-held camera, as the statue is almost 15 feet in height. Terry launches XPose

using the associated app on her mobile device. The home view of the app contains a

viewfinder, which displays the live video feed from the drone-mounted camera.

2.1.2.1 Explore

Terry is initially unsure about the best viewing angle for the shot and decides to

explore the POVs around the statue. She selects the statue as the object of interest

and uses XPose’s exploration modes to sample the POVs.

Object of Interest Selection First, Terry performs pan and zoom gestures (Fig. 2.1)

on the touchscreen to get the statue into the viewfinder. Then she draws a circle

around the statue in the viewfinder (Fig. 1.3a). A rectangular bounding box appears

to confirm that the statue has been selected and is being tracked.

POV Sampling While the statue is being tracked in the viewfinder, Terry activates

the Orbit exploration mode (Fig. 1.3b). The flying camera then takes sample shots

while orbiting around the statue autonomously (Fig. 1.3c).

XPose currently provides three explorations modes: Orbit, Pano, and Zigzag

(Fig. 2.2). They leverage the autonomous flying capability of a drone-mounted cam-

era and systematically explore the POVs by taking sample shots evenly distributed

18

Chapter 2. System Design

Eyeball Panning

Gestures

Camera Motion

Use Case

Pan and tilt

Translational Panning

Gestures

Camera Motion

Use Case

Move in the image plane

Zooming

Gestures

Camera Motion

Use Case

Zoom in and out

Figure 2.1: User intents for direct view manipulation. User intents of eyeball panning and
translation panning are expressed via swiping gestures with four and two fingers respectively.
The zooming intents are expressed via pinch and stretch gestures. In addition, single-finger
gestures are already reserved for object selection by encircling (Fig. 1.3a) and object composition
by dragging (Fig. 1.3g).

19

Chapter 2. System Design

Orbit Pano Zigzag

Figure 2.2: Exploration modes.

along predefined trajectories. The Orbit mode is useful when the user has a single

main object of interest, e.g., a person, a statue, or an interesting artifact, but is quite

unsure about the viewing angle for the best shot. Under this mode, the camera flies

a full circle, while looking inward at the object in the center. Under the Pano mode,

the camera looks outward, instead of inward. There is no object of interest to be

focused. The camera stays at a fixed location while panning horizontally for full 360

degrees. This mode is well-suited for panoramic shots of scenic landscapes, such as

oceans, prairies, or glaciers. The Orbit and Pano modes pan the camera, but fix its

tilt. The Zigzag mode exploits both panning and tilting. It is useful when the user

knows roughly the best viewing angle of an object of interest against its background

scene. The camera flies along circular arcs at multiple heights, all centered at the

object of interest. Again, the camera always points at the object. One use of the

Zigzag mode is to take a selfie against a scenic background. The exploration modes

free the user from the tedium of manually piloting the drone through low-level motion

commands.

20

Chapter 2. System Design

2.1.2.2 Compose

After getting many sample shots through the Orbit mode, Terry is ready to finalize

the photo.

POV Restore Terry switches to the gallery view in the app (Fig. 1.3d) and browses

the sample shots displayed there (Fig. 1.3e). All sample photos have the statue in

the center, but different backgrounds. To take a closer look, Terry taps on a photo to

see it in the full-screen photo view (Fig. 1.3e,f). One photo with many tall buildings

in the background looks promising, but the composition is not ideal. The accidental

alignment of the statue’s head and a tall building is distracting. To refine it, Terry

taps a button and commands the flying camera to restore the POV associated with

the selected sample photo (Fig. 1.3f).

Direct View Manipulation From the restored POV, Terry selects two buildings in

the viewfinder as additional objects of interest and drags them, one at a time, to

the left and right side of the statue respectively, so that the statue’s head appears

in the gap between the two buildings (Fig. 1.3g). XPose flies to a new POV that

produces the desired composition as closely as possible and displays the photos in the

viewfinder. Quite satisfied, Terry takes the final shot (Fig. 1.3h,i).

2.2 System Functions

System functions introduced in the explore-and-compose paradigm are supported by

seven system components: gesture recognition, camera localization, object track-

ing, photo composition, trajectory planning, collision avoidance, and drone control.

This subsection shows how the system functions depend on the system components.

Tab. 2.1 is an overview.

21

Chapter 2. System Design

System
Components

Explore Compose

Object of Interest
Selection

POV
Sampling

POV
Restore

Direct View
Manipulation

✔ ✔

✔

✔ ✔✔

Camera Localization ✔

Object Tracking ＊
✔

＊
✔✔

Gesture Recognition

Photo Composition

Trajectory Planning

✔

✔✔ ✔

✔ ✔✔✔

Collision Avoidance

Drone Control

Table 2.1: Main functions and system components. "indicates a required system component.
"* indicates that the system component is required when there are selected objects of interest.

2.2.1 Object of Interest Selection

For object selection, the system must recognize the user’s gestures: pan, zoom, en-

circle, etc. For the pan and zoom gestures (Fig. 2.1), the system executes the corre-

sponding camera motions. For the encircle gesture (Fig. 1.3a), the system selects the

object and tracks it in the image, as the flying camera moves.

2.2.2 POV Sampling

For POV sampling, the system first plans an exploratory trajectory according to

the selected exploration mode and samples the POVs at equal distance along the

trajectory. It visits each sampled POV sequentially, takes a photo at the POV, and

stores both the image and the camera pose. The system must be localized at all

times, in order to check whether a planned POV has been reached. While visiting

different POVs, the camera shall avoid colliding with obstacles.

22

Chapter 2. System Design

2.2.3 POV Restore

The system keeps track of the POVs of all sample photos obtained in the explore

stage. When the user asks to restore the POV of a selected sample photo, the system

plans and executes a restoring trajectory until it reaches the designated POV.

2.2.4 Direct View Manipulation

To finalize the composition, the user may select objects of interest and drag them to

desired locations in the photo. It then computes the POV that produces the desired

composition as closely as possible, plans a trajectory to it, and flies there.

2.3 Discussion

We investigate both the user interaction design and system implementation issues.

From the design perspective, our proposed explore-and-compose paradigm aims to

achieve the design objective of a more intuitive interface for efficiently exploring POVs

and directly manipulating the visual composition. From the implementation per-

spective, there are many practical problems encountered during the implementation

life-cycle.

2.3.1 Problem in Camera Localization

For the camera localization component, there are many simultaneous localization

and mapping (SLAM) algorithms available, such as PTAM [Klein and Murray, 2007],

SVO [Forster et al., 2014], LSD-SLAM [Engel et al., 2014a], ORB-SLAM[Mur-Artal

et al., 2015] and so on. PTAM, as one of the pioneer works in monocular cam-

era SLAM, is designed for the use case of augmented reality in small workspaces.

There are a few limitations preventing PTAM from being used in the photo-taking

23

Chapter 2. System Design

setting. In particular, PTAM can hardly localize the camera while building a large

map during exploration, because PTAM runs a full bundle adjustment which limits

its scale to small workspaces [Strasdat et al., 2011]. SVO, the first version [Forster

et al., 2014], assumes an almost planar environment. It works well for a downward-

looking camera, but is not the ideal choice for localizing a forward-facing camera

on the Parrot Bebop drone. SVO2 [Forster et al., 2017] removes this assumption.

LSD-SLAM localizes the camera by comparing the entire images to each other to

reference them to each other, which is not robust against outliers. Unfortunately, the

drone-mounted camera suffers from poor image quality and frequent frame dropping

due to limited onboard processing power and unstable wireless connection, so that

LSD-SLAM is not a reliable choice. Finally, ORB-SLAM became our choice in the

prototype implementation. It employs the concept of covisibility [Mei et al., 2010;

Strasdat et al., 2011] to enable exploration in large environment. Moreover, ORB-

SLAM localizes the camera by exacting corner features from each frame, which makes

it robust against many practical issues common to drone-mounted cameras, such as

temporary frame drops, occlusions, camera exposure changes, etc.

2.3.2 Problem in Object Tracking

For the object tracking component, an image-based tracking algorithm [Kalal et al.,

2012; Nebehay and Pflugfelder, 2015] seems to be a natural choice. However, existing

image-based tracking algorithms are not robust against large viewing angle changes

(e.g., in the Orbit mode) or large viewing distance changes (e.g., while zooming in

and out). We present our approach to robust object tracking in Sec. 5.2.3.

24

Chapter 2. System Design

2.3.3 Problem in Photo Composition

Composition is one of the utmost important aspects of photo-taking. In our design,

the system needs to compute the POV that produces the user desired composition.

Chapter 3 is dedicated to investigating the underlying POV search problem for com-

posing multiple objects of interest in the scene.

2.3.4 Problem in Collision Avoidance

Last but not least, collision avoidance is a standard but important problem to be

addressed for flying drones. Due to the interactive nature of the system design, the

system needs to avoid collisions while achieving user intended POVs. In Chapter 4,

we present a method that estimates a dense depth map based on monocular camera

image input that is then used to reach user intended POVs while avoiding obstacles.

25

Chapter 3

POV Selection for Photo Composition

Composition in photography refers to the arrangement of visual elements within an

image frame. It is critical for a photograph. A well-composed photo conveys a clear

message from the photographer to the viewer. Usually, the photographer interprets

a group of visual elements as an object of interest in the scene, such as a statue, a

crowd of people, a row of buildings in the background, etc. With XPose, the user

performs intuitive gestures to directly compose multiple objects of interest on the

image plane (Fig. 1.3g,h). This chapter is dedicated to investigating the underlying

POV selection problem for composing multiple objects of interest in the scene.

While composing a photo, the photographer decides where each object of interest

is located in the viewfinder. We define the composition of a photo as the compositions

of all objects of interest. Formally speaking, the composition of each object β is the

region it occupies on the image, denoted by Rβ, and its desired composition is another

region R∗β on the image. We define composition error εc as the difference between

the actual composition and the desired composition:

εc =
∑
β∈B

dH(Rβ,R
∗
β) (3.1)

26

Chapter 3. POV Selection for Photo Composition

Photo Composition

Trajectory Planning
and Execution

Gesture Recognition
desired composition

current POVCamera Localization

desired POV

current composition
Object Tracking

Figure 3.1: Information flow for photo composition component.

where B is the object set and dH(·, ·) is the Hausdorff distance [Rockafellar and Wets,

2009] between two regions. The Hausdorff distance is normalized with respect to the

diagonal length of the image. For simplicity, we use the center point of the bounding

box as the actual composition location, and the ending point of the dragging gesture

as the desired composition location. This simplification makes the Hausdorff distance

between two regions to be the Euclidean distance between two points. A photo with

the desired composition is the one that minimizes the composition error (Eq. (3.1)).

In order to produce a photo with the desired composition, the flying camera has to

place itself at the corresponding desired POV. This is achieved by the photo compo-

sition component in our system design (Tab. 2.1). Fig. 3.1 illustrates the information

flow for this component. The inputs are the current object composition provided by

object tracking, the user desired composition provided by gesture recognition, and

the current camera POV provided by camera localization. The output is a POV with

desired composition. This POV selection problem is closely related to the well-known

Perspective-n-Point (PnP) problem estimating the pose of a calibrated camera given

a set of n 3D points in the world and their corresponding 2D projections in the image.

Generally speaking, there are only a handful number of main objects of interest

in a photograph. We first focus on the case of composing two objects of interest, a

common situation in photo-taking (Sec. 3.1). For example, foreground-background

27

Chapter 3. POV Selection for Photo Composition

(a) (b) (c)

(d) (e) (f)

Figure 3.2: Photos with two main objects of interest.

composition and side-by-side composition are good practices in both hand-held cam-

era photography (Fig. 3.2a,b,c) and flying camera photography (Fig. 3.2d,e,f). To

compose more objects of interest, we propose a sampled-based method in Sec. 3.2.

3.1 Two Objects Composition

Assume that the positions of two objects of interest are known and their correspond-

ing projections on the image plane are specified by the user. Determining the 6

DoFs camera pose that satisfies the composition constraints corresponds to the PnP

problem with n = 2. P2P is related to the family of minimal problems in computer

vision, and our solution approach shares a similar line of thought. Many minimal

problems in computer vision attempt to solve for the unique solution of the unknown

camera parameters with a minimum number of correspondences. In particular, P3P

is the minimal problem in the family of PnP problems, which requires n = 3 point

correspondences. Having only n = 2 point correspondences, the P2P problem is

28

Chapter 3. POV Selection for Photo Composition

under-determined and has infinite solutions. This means that there are infinitely

many photos with the desired composition, i.e., the composition error is zero. We

propose to solve the problem by adding the constraint that the flying camera should

reach one of the solutions as fast as possible along the shortest path. This leads to a

constrained nonlinear optimization problem.

We show that our constrained nonlinear optimization problem can be solved in

closed form. By analyzing the geometry of the solution space and applying the first-

order optimality conditions of the objective function, we derive a maximum of 16

candidate solutions. We then obtain the global optimum by enumeration. While

generic nonlinear optimization methods can solve our problem as well, they are not

practical onboard the drones that have limited computation power. In addition, they

often get stuck in local minima, because of the nonlinear constraints.

In this section, we investigate the P2P problem for flying-camera photo compo-

sition (Sec. 3.1.2). We provide a closed-form solution to the resulting constrained

nonlinear optimization problem (Sec. 3.1.3). Finally, we conduct experiments on syn-

thetic datasets and on a real flying camera to evaluate our solution for feasibility and

robustness (Sec. 3.1.4).

3.1.1 Related Work

Minimal Problems Minimal problems in computer vision are the problems solved

from a minimal number of correspondences. For example, in the five-point relative

pose problem [Nistér, 2004], five corresponding image points are needed to provide

five epipolar equations to estimate the essential matrix. A sixth point correspon-

dence is needed if the focal length is unknown [Stewénius et al., 2008] or there is a

radial distortion parameter to be estimated [Byrod et al., 2008; Kukelova and Pa-

jdla, 2007b]. Similarly, additional correspondences are required if there are more un-

29

Chapter 3. POV Selection for Photo Composition

known camera parameters, such as the eight-point problem for estimating fundamen-

tal matrix and single radial distortion parameter for uncalibrated cameras [Kukelova

and Pajdla, 2007a], and the nine-point problem for estimating fundamental matrix

and two different distortion parameters for uncalibrated cameras [Byrod et al., 2008;

Kukelova and Pajdla, 2007b]. By contrast, we solve for a camera pose with six un-

known parameters, but it only has four equations derived from two correspondences.

Perspective-n-Point PnP problems estimate the rotation and translation of a cal-

ibrated perspective camera by using n known 3D reference points and their corre-

sponding 2D image projections. Since each correspondence provides two equality

constraints, the minimal case is having three correspondences [Gao et al., 2003]. Four

and more correspondences have been also investigated to improve the robustness of

the solution [Triggs, 1999; Lepetit et al., 2009; Li et al., 2012; Zheng et al., 2013;

Urban et al., 2016].

This section solves a P2P problem. Early studies on P2P make additional as-

sumptions, such as planar motion constraints [Booij et al., 2009; Choi and Park,

2015], known camera orientation [Merckel and Nishida, 2008; Bansal and Daniilidis,

2014], known viewing direction and triangulation constraint of the 3D points [Cam-

poseco et al., 2017]. We make no such assumptions. Instead, we form an optimization

problem to find the solution with the minimal flying distance to reach.

3.1.2 Problem Formulation

We represent each object as a ball BW
j , j = 1, 2, in a world coordinate frame FW

1.

The ball center qWj = [xWj , y
W
j , z

W
j]T represents the estimated object centroid position,

and the radius εj denotes a collision-free distance estimated based on the object size

1In this chapter, the superscripts, W , I and C, denote the world, image and camera coordinate
frames, respectively.

30

Chapter 3. POV Selection for Photo Composition

during selection. Compared with other object representations with more details, a

ball representation is not only easy for human to interact with, but also efficient in

computation [Gleicher and Witkin, 1992; Kyung et al., 1996; Reisman et al., 2009;

Lino and Christie, 2015]. For each object, its corresponding user-specified projections

on the image plane are represented as pIj = [uIj , v
I
j , 1]T in the homogeneous image

coordinate frame FI . It is worth to notice that the correspondences between pIj and

qWj form a P2P problem that is known to have infinitely many solutions.

Among the solutions, we are interested in one camera pose in the world coordinate

frame FW that could be represented as a rotation matrix RW
C and a translation vector

tWC from the camera coordinate frame FC to FW . This particular camera pose should

be the nearest one to a given starting camera position tW0 = [xW0 , y
W
0 , z

W
0]T in FW .

Moreover, it should not collide with the two objects of interest. Hence, we formulate

an optimization problem as follows.

argmin
RW

C ,tWC

‖tWC − tW0 ‖
2
, (3.2)

subject to

λjp
I
j = K (RC

W qWj + tCW), (3.3a)

‖tWC − qWj ‖ ≥ εj, (3.3b)

in which j = 1, 2. λj denotes the depth factor of the j-th object. K is the calibrated

intrinsic parameter matrix for the perspective camera with the pinhole imaging model.

RC
W and tCW denote the rotation matrix and translation vector from FW to FC , re-

spectively.

The equality constraint in Eq. (3.3a) corresponds to the projective imaging equa-

tions derived from the two point correspondences. Since K is known, it is convenient

31

Chapter 3. POV Selection for Photo Composition

(a) (b)

O

ω

Q
2

C

Q
1

P
1

P
2

Q
2

Q
1

P
1 P

2

C

ω

Figure 3.3: Camera positions that satisfy constraints in Eq. (3.3). C denotes the camera’s
center of perspective. Q1 and Q2 denote the object positions. P1 and P2 denote the user-
specified object projections. (a) ∠Q1CQ2 = ∠P1CP2 = ω is a constant angle. (b) All points
on the solid arc of �O satisfy constraints in Eq. (3.3). Rotating the arc around the axis through
Q1 and Q2 forms a toroidal surface, on which all points satisfy constraints in Eq. (3.3) as well.

to use the normalized camera coordinate frame

p̂Cj = [ûj v̂j 1]T = K−1 pIj , j = 1, 2. (3.4)

The inequality constraint in Eq. (3.3b) ensures a collision-free distance to each

object. It is reasonable to assume that ε1 + ε2 is relatively small as compared to the

distance between the two objects, which, in fact, ensures the existence of the solution.

3.1.3 P2P Solution in Closed Form

Before diving into the details of the algebraic derivation, we first analyze the solution

space of the constraints. The solution space for camera positions ∈ R3 that satisfy

the constraints is a toroidal surface (Fig. 3.3b and 3.4a). Each camera position

corresponds to a unique camera orientation ∈ SO(3), so that we can first solve for

32

Chapter 3. POV Selection for Photo Composition

(a) (b)

q
2
A

z

y

x

t
0
A

x

y

z
ø

q
1
A

C’

C

Xθ

t
C

*A

FAFA

Figure 3.4: The auxiliary frame FA. (a) The objective is to find t∗AC on the toroidal surface with
the minimal distance to the given starting camera position tA0 . (b) The intersections between
the toroidal surface and any plane x = xθ in FA are circles, so any point C ′ on the circle can
be parametrized using a reference point C and an angle φ.

the position and then determine the orientation.

Parameterizing the toroidal solution space ∈ R3 is the key to solve the problem.

The toroid surface has 2 DoFs: the arc and the rotational axis as shown in Fig. 3.3b.

We introduce an auxiliary frame with one axis passing through the rotational axis of

the toroid for easy parameterization.

Next, we solve the optimization problem with the following steps. First, we con-

struct the auxiliary coordinate frame. Then, we reformulate the constraints and the

objective function using the auxiliary frame. Finally, we solve the equation system

derived from the first-order optimal condition of the objective function to find the

global optimal camera position, hence, the corresponding camera orientation.

33

Chapter 3. POV Selection for Photo Composition

3.1.3.1 Constructing the Auxiliary Frame

We construct the auxiliary frame FA with one axis be the axis of rotation passing

through qW1 and qW2 as shown in Fig. 3.3. More specifically, qW1 coincides with the

origin of FA and qW2 sits on the positive x-axis of FA (Fig. 3.4a), i.e.,

qA1 =


0

0

0

 , qA2 =


ξlen

0

0

 , ξlen = ‖qW1 − qW2 ‖. (3.5)

Using the auxiliary frame, we manage to reformulate and solve the original prob-

lem in a simpler form, as shown later from Sec. 3.1.3.2 to Sec. 3.1.3.7.

Let RW
A and tWA be the rotation matrix and translation vector from FA to FW ,

respectively. Then, tWA = qW1 , and the first column of RW
A , c1

W
A = (qW2 − qW1)/ξlen.

The second and the third columns of RW
A could be chosen as an arbitrary pair of

orthonormal vectors that span the null space of c1
W
A . In the case when RW

A is an

improper rotation matrix, i.e., det(RW
A) = −1, we swap the second and the third

columns of RW
A .

3.1.3.2 Reformulating Equality Constraints

Now, we use the auxiliary frame FA to reformulate the equality constraints in Eq. (3.3a),

λjp̂
C
j = RC

A qAj + tCA, j = 1, 2, (3.6)

in which RC
A and tCA are the unknown rotation matrix and translation vector from FA

to FC ,

RC
A =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , tCA =


t1

t2

t3

 . (3.7)

34

Chapter 3. POV Selection for Photo Composition

Next, it is desirable to eliminate the depth factors as follows,

[p̂Cj]× (RC
A qAj + tCA) = 03×1, j = 1, 2, (3.8)

where [p̂Cj]× is the skew-symmetric matrix for vector p̂Cj . Eq. (3.8) produces six

equality constraints, and two of them are redundant. We transform the remaining

four equality constraints into a matrix form,

A w = 04×1, (3.9)

where

A =


0 0 0 0 −1 v̂1

0 0 0 1 0 −û1
0 −1 v̂2 0 −1/ξlen v̂2/ξlen

1 0 −û2 1/ξlen 0 −û2/ξlen

 , w =



r11

r21

r31

t1

t2

t3


, (3.10)

in which r11, r21, r31, t1, t2 and t3 are the entries in RC
A and tCA defined above. Note

that there is a constraint imposed on the first three entries, r11, r21 and r31, in w, as

they form the first column c1
C
A of RC

A, which means ‖c1CA‖ = 1.

The benefit of constructing FA shows up. Since qA1 and qA2 are constructed to have

only one non-zero entry, w is much simplified so that it does not contain the entries

in the second column c2
C
A and the third column c3

C
A of RC

A. Otherwise, without FA,

w would contain all the 9 entries in a rotation matrix with more constraints imposed.

Next, we parameterize w. The vector w of unknowns belongs to the null space of

A. Since nullity(A) = 2 as rank(A) = 4 according to Eq. (3.10), w can be expressed

35

Chapter 3. POV Selection for Photo Composition

ρ
1

ρ
2

c1
C
A

||ρ ||
1

ρ
1

θ

ρ x ρ
1 2

Figure 3.5: Parameterization of c1
C
A using θ.

as the following linear combination form,

w =
[
e1 e2

]α1

α2

 , e1 =



û2

v̂2

1

0

0

0


, e2 =



û2 − û1
v̂2 − v̂1

0

û1ξlen

v̂1ξlen

ξlen


, (3.11)

where α1 and α2 are two coefficients, e1 and e2 are the two eigenvectors of A corre-

sponding to the two null eigenvalues of A, which could be easily verified. Hence, c1
C
A

and tCA can be expressed as linear combinations as well,

c1
C
A =

[
ρ1 ρ2

]α1

α2

 , tCA =
[
τ 1 τ 2

]α1

α2

 , (3.12)

in which ρ1 = p̂C2 , ρ2 = p̂C2 − p̂C1 , τ 1 = 03×1 and τ 2 = p̂C1 ξlen.

Now, c1
C
A and tCA are parameterized with two parameters, α1 and α2. Next, we

use the constraint, ‖c1CA‖ = 1, to reduce to a form using only one parameter. The

idea is depicted in Fig. 3.5. We observe that c1
C
A is a unit vector in the 2D plane

spanned by ρ1 and ρ2. Hence, it can be parameterized using a rotation angle θ. We

36

Chapter 3. POV Selection for Photo Composition

denote the matrix for a rotation by an angle of θ around ρ1 × ρ2 as Rθ. Hence,

c1
C
A = Rθρ1/‖ρ1‖, which contains θ as the only parameter. More explicitly,

c1
C
A = sin(θ)


ξ1

ξ2

ξ3

 + cos(θ)


ξ4

ξ5

ξ6

 , (3.13)

in which ξk’s are constant, k = 1, 2, 3, 4, 5, 6, i.e.,

ξ1 =
−û1 + û2 + û2v̂1v̂2 − û1v̂22

‖ρ1‖‖ρ1 × ρ2‖
, ξ4 =

û2
‖ρ1‖

,

ξ2 =
−v̂1 + v̂2 + v̂2û1û2 − v̂1û22

‖ρ1‖‖ρ1 × ρ2‖
, ξ5 =

v̂2
‖ρ1‖

,

ξ3 =
û1û2 + v̂1v̂2 − û22 − v̂22
‖ρ1‖‖ρ1 × ρ2‖

, ξ6 =
1

‖ρ1‖
.

(3.14)

Since c1
C
A is a linear combination of ρ1 and ρ2 (Eq. (3.12)), we have

α1

α2

 = S+ c1
C
A, (3.15)

in which S+ is the Moore-Penrose matrix inverse of [ρ1 ρ2]. Plugging Eq. (3.15) back

into Eq. (3.12), we parameterize tCA with θ as

tCA = sin(θ)
‖ρ1‖

‖ρ1 × ρ2‖
τ2. (3.16)

3.1.3.3 Reformulating Inequality Constraints

Similarly, we also reformulate the inequality constraints in Eq. (3.3b) using FA as

‖tAC − qAj ‖ ≥ εj, j = 1, 2, (3.17)

37

Chapter 3. POV Selection for Photo Composition

where tAC is the unknown translation vector from FC to FA,

tAC =


x

y

z

 = −


(c1

C
A)T

(c2
C
A)T

(c3
C
A)T

 tCA, (3.18)

in which c1
C
A, c2

C
A and c3

C
A are respectively the first, second and third columns of RC

A

defined previously.

To obtain the boundary points that satisfy both the equality and inequality con-

straints, we use the parameterizations in Sec. 3.1.3.2 to parameterize x, y and z in

tAC respectively, as follows.

First, we can parameterize x with θ using the parameterizations of c1
C
A and tCA in

Eq. (3.13) and Eq. (3.16),

x = ξlen sin(θ)[sin(θ)− p̂C1 · p̂C2
‖p̂C1 × p̂C2 ‖

cos(θ)], (3.19)

in which · and × denote the inner product and the cross product of two vectors

respectively. Let ω denote the angle between the two known vectors p̂C1 and p̂C2 ,

which corresponds to ∠P1CP2 as shown in Fig. 3.3. Since p̂C1 · p̂C2 = ‖p̂C1 ‖‖p̂C2 ‖ cos(ω)

and ‖p̂C1 × p̂C2 ‖ = ‖p̂C1 ‖‖p̂C2 ‖ sin(ω), we can simplify x as

x = ξlen sin(θ)[sin(θ)− cot(ω) cos(θ)] = −ξlen csc(ω) sin(θ) cos(θ + ω). (3.20)

Next, we parameterize y and z. Since ‖tAC‖ = ‖tCA‖, we have

y2 + z2 = ‖tCA‖2 − x2 = ξ2len csc2(ω) sin2(θ) sin2(ω + θ). (3.21)

The benefit of constructing FA shows up, again. Eq. (3.20) and Eq. (3.21) show

38

Chapter 3. POV Selection for Photo Composition

that both x and y2 + z2 are functions of θ. In other words, a fixed θ determines a

plane in FA with a fixed x value, and the points on that plane forms a circle with

a fixed radius
√
y2 + z2, which is depicted in Fig. 3.4b. Hence, we introduce a new

parameter φ for the angle of rotation around the x-axis of FA, so that

y = sin(φ)ξlen

√
csc2(ω) sin2(θ) sin2(ω + θ),

z = cos(φ)ξlen

√
csc2(ω) sin2(θ) sin2(ω + θ).

(3.22)

Finally, plugging Eq. (3.20) and Eq. (3.22) back into Eq. (3.17), we obtain two

equations for the boundary

sin(θ) = ± sin(ω)ε1/ξlen, (3.23a)

sin(θ + ω) = ± sin(ω)ε2/ξlen, (3.23b)

from which we can solve for eight possible pairs of sin(θ) and cos(θ) corresponding to

eight solutions of θ.

In fact, the parameterization of y2 + z2 in Eq. (3.21) suffices our need to parame-

terize the boundary points. Nevertheless, the individual parameterization of y and z

is useful below in Sec. 3.1.3.4.

3.1.3.4 Reformulating the Objective Function

At last, we reformulate the objective function in Eq. (3.2) using FA as well,

argmin
RW

C ,tWC

‖tAC − tA0 ‖
2

(3.24)

39

Chapter 3. POV Selection for Photo Composition

C
12

q
1
A

t
0
A

q
2
Az

y

x
ø

C
11

C
21

C
22

C’
11

C’
21

C’
12

C’
22

FA

Figure 3.6: Optimal camera position candidates. qA1 , qA2 and tA0 determine a plane in FA,
which intersects with the toroidal surface and forms two solid arcs. C11, C12, C21 and C22

in blue are four candidates. Their symmetric points about the x-axis, C ′11, C ′12, C ′21 and C ′22
in red, are also candidates. The green points around qA1 and qA2 are eight candidates at the
boundary.

in which tA0 = RW
A
T

(tW0 − tWA) = [ξx ξy ξz]
T is known. This reformulated objective

function essentially means minimizing the distance from the initial camera position

tA0 to the toroidal surface in FA, as shown in Fig. 3.4.

Plugging Eq. (3.20) and Eq. (3.22) into Eq. (3.24), we successfully parameterize

the objective function

obj(φ, θ) =(−ξlen csc(ω) sin(θ) cos(θ + ω)− ξx)2 (3.25)

+ (sin(φ)
√

csc2(ω) sin2(θ) sin2(ω + θ)− ξy)2

+ (cos(φ)
√

csc2(ω) sin2(θ) sin2(ω + θ)− ξz)2.

40

Chapter 3. POV Selection for Photo Composition

3.1.3.5 Minimization

To minimize obj with respect to φ and θ, we build the first-order optimality condition

of Eq. (3.25), and identify all the stationary points and boundary points. First, we

calculate the derivative of obj with respect to φ,

∂obj

∂φ
= 2ξlen(ξz sin(φ)− ξy cos(φ))

√
csc2(ω) sin2(θ) sin2(θ + ω). (3.26)

Setting it to be 0, we have the following four cases,

sin(θ) = 0, (3.27a)

sin(θ + ω) = 0, (3.27b)

sin(φ) =
ξy√
ξ2y + ξ2z

, cos(φ) =
ξz√
ξ2y + ξ2z

. (3.27c)

sin(φ) = − ξy√
ξ2y + ξ2z

, cos(φ) = − ξz√
ξ2y + ξ2z

. (3.27d)

Note that Eq. (3.27a) and Eq. (3.27b) correspond to the cases when qA1 and

qA2 are optimal solution candidates respectively, which clearly violate the inequality

constraints in Eq. (3.17). Suppose this optimization problem does not have the

inequality constraints, qA1 and qA2 will be physically infeasible solutions. Then, other

optimal solution candidates solved from Eq. (3.27c) and Eq. (3.27d) may not contain

the true optimum.

Eq. (3.27c) and Eq. (3.27d) correspond to the general cases. It shows that φ only

depends on the initial camera position tA0 . In fact, the angle φ corresponds to the

plane determined by the three points, tA0 , qA1 and qA2 , as shown in Fig. 3.6. Although

41

Chapter 3. POV Selection for Photo Composition

two solutions of φ can be solved from Eq. (3.27c) and Eq. (3.27d), they differ from

each other by π, which essentially correspond to the same plane. Therefore, the

optimal camera position sits on the plane determined by tA0 , qA1 and qA2 .

Next, we substitute the two solutions of φ from Eq. (3.27c) and Eq. (3.27d) into

the derivative of obj with respect to θ, and obtain the following two cases.

∂obj

∂θ
=
ξlen csc2(ω)

2E1

(E1E2 + E3E4), (3.28a)

∂obj

∂θ
=
ξlen csc2(ω)

2E1

(E1E2 − E3E4), (3.28b)

where

E1 =
√

csc2(ω) sin2(θ) sin2(θ + ω),

E2 = 2ξx sin(2θ + 2ω) + 2(ξlen − ξx) sin(2θ),

E3 =
√
ξ2y + ξ2z ,

E4 = sin(4θ + 2ω)− sin(2θ + 2ω)− sin(2θ).

(3.29)

E1 can be further simplified by removing the square root with two cases,

E1 = ± csc(ω) sin(θ) sin(θ + ω). (3.30)

Setting Eq. (3.28a) and Eq. (3.28b) to be 0, we obtain four equations, among

which two are duplicates, therefore, redundant. The remaining two cases can be

further simplified to

sin(2θ)ξ7 + cos(2θ)ξ8 = 0, (3.31a)

sin(2θ)ξ9 + cos(2θ)ξ10 = 0, (3.31b)

42

Chapter 3. POV Selection for Photo Composition

where ξk’s are constant, k = 7, 8, 9, 10, i.e.,

ξ7 = cos(2ω)ξx − sin(2ω)
√
ξ2y + ξ2z − ξx + ξlen,

ξ8 = sin(2ω)ξx + cos(2ω)
√
ξ2y + ξ2z −

√
ξ2y + ξ2z ,

ξ9 = cos(2ω)ξx + sin(2ω)
√
ξ2y + ξ2z − ξx + ξlen,

ξ10 = sin(2ω)ξx − cos(2ω)
√
ξ2y + ξ2z +

√
ξ2y + ξ2z .

(3.32)

Using Eq. (3.31), we can easily solve for eight possible pairs of sin(θ) and cos(θ)

corresponding to eight general solutions of θ. Fig. 3.6 depicts the geometric meanings

of the eight general solutions.

3.1.3.6 Identifying the Best Camera Position

Plugging sin(φ), cos(φ), sin(θ) and cos(θ) solved from Eq. (3.27c), Eq. (3.27d), Eq.

(3.23) and Eq. (3.31) back into Eq. (3.20) and Eq. (3.22), we can get eight solutions

at the boundary and eight general solutions of tAC as illustrated in Fig. 3.6. We apply

three steps to identify the best camera position in FW . First, we use the property of

∠pA1 t
A
Cp

A
2 = ω (Fig. 3.3) and the inequality constraints to eliminate the infeasible

solutions. Second, among the feasible solutions, we pick t∗AC , the one with the shortest

distance to tA0 . Finally, we compute the best camera position t∗WC in FW , using RW
A

and tWA constructed in Sec. 3.1.3.1.

3.1.3.7 Determining the Camera Orientation

The optimal orientation is uniquely determined. In Fig. 3.3, the lengths of the line

segments CP1 and CP2 are both fixed, so the optimal camera position t∗WC determines

two more points in FW . It is then easy and standard to retrieve the optimal camera

orientation R∗WC using these three known points [Umeyama, 1991].

43

Chapter 3. POV Selection for Photo Composition

3.1.3.8 Analyzing the Closed-Form Solution

At the end of this subsection, we briefly discuss the issues related to multiple optimal

solutions and the change in the flying distance caused by noisy inputs.

There are three special cases with multiple optima. First, when the two object

projections coincide with each other, i.e., ω = 0, csc(ω) in Eq. (3.20) is undefined.

Then, x can be any arbitrary value and y = z = 0. This corresponds to the cases

that the optimal camera positions are aligned with the two objects. Second, when

the initial camera position is aligned with the two objects, i.e., ξy = ξz = 0, sin(φ)

and cos(φ) in Eq. (3.27c) and Eq. (3.27d) are undefined. Then, φ can be any

arbitrary value. The optimal camera positions form a circle. Third, when the initial

camera position coincides with some point like O in Fig. 3.3, i.e., ξx = ξlen/2 and

‖tCA‖ = csc(ω)ξlen/2. Then, solving Eq. (3.31) may yield infinitely many solutions of

θ, which correspond to all the points on the solid arc in Fig. 3.3.

Using Fig. 3.6, we can intuitively see how the flying distance is affected after

perturbing the inputs. There are three cases. First, if tA0 stays outside the toroid be-

fore and after perturbing the inputs, the toroid’s shape and size are not substantially

changed, so that the flying distance does not change much either. Second, if tA0 stays

inside the toroid before and after perturbing, the flying distance is upper bounded

by the toroid size, so that the flying distance is also stable. Third, if tA0 crosses the

toroid surface because of the perturbation, the flying distance is small hence stable.

The next section presents the empirical results of using noisy inputs.

3.1.4 Evaluation

Though the closed-form solution is optimal, we are interested in its applicability and

robustness in real photo-taking scenarios, which contain both inaccurate human in-

puts caused by e.g., fat-finger errors [Siek et al., 2005] and imperfect robot executions.

44

Chapter 3. POV Selection for Photo Composition

25

20

15

10
5

0
re

la
tiv

e
di

st
an

ce
 e

rr
or

 (%
)

1 2 3 4 5 6 7 8 9

user-selected object position noise (%)

10

1

0.8

0.6

0.4
0.2

0
5 10 15 20 25 30 35 40 45

user-specified object projection noise (%)

re
la

tiv
e

di
st

an
ce

 e
rr

or
 (%

)

Figure 3.7: Results from synthetic datasets. The horizontal red lines indicate the medians. The
boxes denote the first Q1 and third Q3 quartiles, the dashed lines extending upwards depict the
statistical data extent taken to be Q3 + 1.5(Q3-Q1).

In this subsection, we first show that the resulting flying distance is robust to

inaccurate user inputs. We measure the relative flying distance error using synthetic

datasets. Then, we measure the quality of the resulting composition using the repro-

jection error with the Parrot Bebop flying camera.

3.1.4.1 Evaluation using Synthetic Data

We use synthetic datasets to show that the flying distance is robust to inaccurate

user inputs.

First, we generate ground truth data. We randomly generate 10,000 different sets

of inputs. Each set consists of an initial camera position tW0 , two object centroids

qW1 and qW2 , two collision-free distances ε1 and ε2, and two object projections pI1

45

Chapter 3. POV Selection for Photo Composition

and pI2 on the image plane. The image size is 1920 × 1080. tW0 , qW1 and qW2 are

uniformly drawn from a unit cube [0, 1]3. ε1 and ε2 are uniformly generated so that

ε1 + ε2 ≤ ‖qW1 − qW2 ‖. pI1 and pI2 are uniformly drawn within the image size.

Then, we consider two types of noise introduced by inaccurate user inputs.

Noisy User-Selected Object Positions During object selection, the object positions

may be inaccurately estimated. We corrupt qW1 and qW2 with noise that follows a

uniform distribution around the original object centroids. The noise ranges from 1%

to 10% of their original relative distances in 3D.

Noisy User-Specified Object Projections During direct manipulation, the object

projections may not be specified accurately as in one’s mind. We corrupt pI1 and pI2

with noise that follows a uniform distribution around the original object projections.

The noise ranges from 5% to 45% of their original relative distances on the image to

ensure non-overlapping sampling regions.

Measurement We measure the relative flying distance error denoted as

Errordist(%) =
|dnoisefree − dnoisy|
‖qW1 − qW2 ‖

, (3.33)

in which dnoisefree = ‖tW0 − tnoisefree
W
C ‖ is the distance from the initial camera position

tW0 to the optimized final position tnoisefree
W
C based on noise-free user inputs, dnoisy =

‖tW0 − tnoisy
W
C ‖ is the distance from tW0 to the optimized position tnoisy

W
C based on

corrupted user inputs, and ‖qW1 − qW2 ‖ indicates the scale of the environment.

Fig. 3.7 shows that the flying distance solved using our method is robust to very

noisy user inputs in both cases.

46

Chapter 3. POV Selection for Photo Composition

3.1.4.2 Evaluation with Parrot Bebop

To show our closed-form solution is applicable in real flying camera photography, we

evaluate it on the Parrot Bebop drone whose camera resolution is 1280 × 720. Please

refer to Sec. 5.1 for a detailed system hardware and software setup.

Robot Trajectory Execution Here, we highlight the necessary system components

to reach the computed POV with the Parrot Bebop drone.

The 6 DoFs camera pose is estimated using ORB-SLAM [Mur-Artal et al., 2015]

without other external sensors. However, the drone driver [AutonomyLab, 2018] only

supports 5 DoFs camera control. We enable the 6th DoF by rotating the image plane,

so that the effective image area becomes a circular area at the center of the image,

as in Fig. 3.9. Due to the hardware constraint, the pan-tilt range is also limited, so

that some viewpoints are not achievable.

The camera flying trajectory is modeled as a straight line connecting the initial

camera position to the goal position, by assuming the environment to be free of major

obstruction for flying. The camera orientation is computed based on its position at

that moment, in order to minimize the composition error Eq. (3.1) at all times.

To execute the flying trajectory, each DoF of the camera is controlled by an

independent PID controller. The control gains are fine-tuned by assuming that the

SLAM map is in the metric unit. To resolve the scale ambiguity of the SLAM map, we

adopt a scale estimation method using the onboard ultrasonic altitude measurement

[Engel et al., 2014b].

In practice, the goal camera viewpoint can never be achieved. A viewpoint is

considered as successful, if it satisfies all the following conditions. The camera position

error is below 0.5 meter. The orientation error is below 1 degree. All control signals

at that moment are below certain thresholds as well.

47

Chapter 3. POV Selection for Photo Composition

25

20

15

10

5

0

fre
qu

en
cy

 (%
)

reprojection error (%)
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Figure 3.8: Results from real robot experiments.

Data Collection The experiments are conducted in an indoor environment of size

8m× 6m× 2.5m. We use two distinctive colored balls of diameter 10cm to represent

two objects of interest. We place the two balls at fixed locations in the center area of

the room. Their distance is 1.5 meter from each other.

We collect data from 50 trials. After building a SLAM map, we place the camera

at the locations of the two balls to record their positions qW1 and qW2 in the SLAM

map. Since the objects in real photo-taking scenarios have various shapes, we are

not interested in the accuracy of object centroid estimation. We set the collision-free

distances ε1 and ε2 to be 0.5m and 0.8m respectively.

For each trial, we randomly generate tW0 within the environment. We also ran-

domly generate pI1 and pI2 that are uniformly drawn from the circular area of diameter

700 pixels at the center of the image. We collect 30 frames at the successful view-

points from each trial. We reject the unreachable viewpoints that are outside the

environment or beyond the camera pan-tilt range limits.

Measurement We measure the composition error using the reprojection error on

each collected frame. For each frame, we exact the centroid pixel pexacted
I
j for each

ball j, and measure the distance to its corresponding desired composition, ej =

‖pexacted
I
j − pIj‖. Hence, the reprojection error of a frame with respect to the im-

48

Chapter 3. POV Selection for Photo Composition

age size is Errorreproj(%) = (e1 + e2)/(2× 720).

The histogram in Fig. 3.8 shows the distribution of reprojection errors. Over-

all, the reprojection errors are relatively small, under very challenging conditions,

including imperfect controls, SLAM system errors, etc.

3.1.4.3 Viewpoint Changing Process

We illustrate the viewpoint changing process while composing two objects using a

concrete scenario. As shown in Fig. 3.9, the scenario starts from a high-angle view-

point. The two main parts of the sculpture are selected as the objects of interest.

We build the SLAM map, and record the estimated object positions. We manually

specify the desired compositions for the objects in order to emulate the end points of

direct manipulation gestures.

The viewpoint changes in two steps. First, it quickly changes the orientation to

compose one object, since changing orientation is much faster than flying. Gradually,

the other object converges to the desired composition while the camera is moving

towards the goal. This phenomenon is caused by the fact that the orientation is

recomputed based on the camera position at that time in order to minimize the

reprojection error.

3.1.5 Discussion

The evaluation results show that our closed-form solution to the formulated opti-

mization problem is applicable to real flying robot systems. Our problem focuses

on a subset of aspects that are important to flying camera photography, including

minimizing the flying distance, and avoiding collisions with objects of interest. We

believe the formation could be generalized to include other aspects as well, such as

stabilizing the frame by removing one DoF from rotation, or collision-free flying by

49

Chapter 3. POV Selection for Photo Composition

(a) (b)

(c) (d)

Figure 3.9: The viewpoint changing process. (a) In the initial viewpoint, each colored circle
annotates an object that is composed to the position indicated by the same colored cross. (b)
The viewpoint rotates to compose one object first. (c) The viewpoint moves so that the other
object gradually converges to the desired composition. (d) The final viewpoint.

50

Chapter 3. POV Selection for Photo Composition

adding constraints for obstacles in the environments.

In addition to the two objects composition problem studied in this section, we

describe a method for three or more objects in the next section.

3.2 Three or More Objects Composition

To compose multiple objects, we propose a sample-based method that solves the

problem with an approximate POV, which is easy to implement, and can be applied

to solve two objects composition problem as well.

The idea is to sample multiple candidate POVs and pick the best one. How-

ever, the space of POVs is very large. To achieve real-time performance, we reduce

the sampling space by decoupling the camera position and the camera orientation.

We only sample camera positions, and at each sampled camera position we find an

approximately optimal orientation. The details are described below.

First, the method samples many camera positions as candidates around the cur-

rent POV. Those camera positions are sampled unevenly: it is denser near the current

POV and sparser further away (with an upper bound). This sampling strategy is to

increase the chance of finding good nearby POVs in order to minimize the potential

flying distance. Second, the candidate orientation at each candidate position is es-

timated by averaging multiple orientations. Each is the optimal orientation at that

candidate position for one object. At last, the candidate POV with the minimum

composition error is returned.

The POV found by this sampled-based method is an approximate solution that

may not be globally optimal. However, since the dragging gestures are imprecise touch

inputs after all, it is unnecessary to over-interpret those gestures very accurately.

51

Chapter 3. POV Selection for Photo Composition

3.3 Summary

We investigated the underlying POV search problem for composing multiple objects

of interest. Sec. 3.1 solved the P2P problem for composing two objects of interest.

To the best of our knowledge, it is the first study that determines the camera param-

eters given an under-constrained system. By incorporating the user’s composition

requirements and minimizing the camera’s flying distance, we formed a constrained

nonlinear optimization problem, solved it in closed form, and evaluated the applica-

bility in real flying camera systems. Sec. 3.2 proposed a general sample-based method

to solve the multiple objects composition problem. In system evaluation (Chap. 6),

we implement this method to evaluate the explore-and-compose paradigm proposed

in Sec. 2.1.2.

In this chapter, the proposed methods assume that the intended POV can be

achieved safely without colliding with obstacles. Next, we study the depth perception

problem for collision avoidance with a monocular camera in the following chapter.

52

Chapter 4

Depth Perception for

Collision Avoidance

XPose promotes direct interactions with images by keeping the tedium of low-level

drone control away from the user. Autonomously avoiding collision with obstacles

while reaching user intended POVs is, therefore, an important system capability.

Our envisioned flying camera in the future is a portable drone fitted with a light-

weight monocular camera with little power consumption (Fig. 4.1). This chapter is

dedicated to investigating the collision avoidance problem using a monocular camera.

Using monocular cameras for collision avoidance and obstacle perception remains

(a) (b) (c)

Figure 4.1: Portable flying cameras. (a) A palm-sized flying camera [Cheerson, 2018]. (b) A
phone-sized flying camera [AirSelfie, 2018]. (c) A wearable flying camera [Flynixie, 2018].

53

Chapter 4. Depth Perception for Collision Avoidance

Collision Avoidance

Drone ControlCamera Localization
current POV

image

Trajectory Planning

intermediate POV

target POV

Local Trajectory
Planning

Occupancy Grid Mapping

grid map
depth map

construction

Figure 4.2: Information flow for collision avoidance component. This chapter focuses on the
depth map construction problem highlighted in red.

an area of active research in robotics and computer vision. One main approach is

to learn a policy that maps from images to actions end-to-end using training data.

The learned policies have enabled flying cameras to navigate in the forest [Ross et

al., 2013] and indoor environments [Sadeghi and Levine, 2017]. However, such end-

to-end approach is data-hungry and suffers from the problem of generalizability in

new environments.

Compared with data collection for the end-to-end approach, it is much easier to

acquire depth information for obstacle perception using, for example, Structure-from-

Motion (SfM) [Schonberger and Frahm, 2016], Multi-View Stereo (MVS) [Furukawa et

al., 2010] and RGB-D image datasets [Saxena et al., 2009; Silberman and Fergus, 2011;

Geiger et al., 2013; Li and Snavely, 2018]. This leads to a modular approach to the

collision avoidance problem by solving two sub-problems: mapping and planning.

Fig. 4.2 illustrates our modular design of the collision avoidance component. For

the planning module, there are many standard motion planning algorithms, such as

potential field [Khatib, 1985], A*, RRT* [Karaman and Frazzoli, 2010], etc. The

major challenge lies in the mapping module that constructs an accurate depth map

54

Chapter 4. Depth Perception for Collision Avoidance

using images captured from a monocular camera in real time, which is the main focus

of this chapter.

4.1 Depth Map Construction

A monocular camera can perceive depth in real time through geometry-based ap-

proach and data-driven approach. On the one hand, the geometry-based approach

usually provides robust depth estimations of visual features sparsely extracted from

the image. On the other hand, the data-driven approach usually estimates dense

depth maps. However, their depth estimations are prone to errors, which are not as

accurate as the depth estimations based on geometric models.

Our key idea is to join the strengths from both geometry-based and data-driven

approaches. Intuitively, we rely on the accurate depth map from geometric models

to refine the error-prone dense depth map. In other words, we use the dense depth

map as a prior to upsample the accurate sparse depth map.

In this section, we first review the geometry-based and data-driven approaches

(Sec. 4.1.1). Next, we give a formal definition to our depth map construction problem

(Sec. 4.1.2). Then, we present our depth map construction pipeline (Sec. 4.1.3). Fi-

nally, we conduct experiments on real world image datasets for evaluation (Sec. 4.1.4).

4.1.1 Related Work

4.1.1.1 Geometry-based Approach

Geometry-based approach to monocular depth perception includes feature-based meth-

ods and direct methods. Feature-based methods [Klein and Murray, 2007; Mur-Artal

et al., 2015] first extract a set of corner features from the image. Then, the scene

geometry is computed only based on the corners, resulting in a very sparse depth

55

Chapter 4. Depth Perception for Collision Avoidance

map. By contrast, direct methods do not extract features. They optimize the scene

geometry based on the image intensity changes over consecutive frames. In addition

to corners, edges from the image may also have robust depth estimations, resulting

a semi-dense depth map [Forster et al., 2014; Engel et al., 2014a]. Dense mapping

with direct methods has also been studied [Newcombe et al., 2011], but in small-scale

environments.

A recent method, FLaME [Nicholas Greene and Roy, 2017], combines feature-

based and direct methods to construct dense 3D depth maps for flying robot navi-

gation. The idea is to extract point features uniformly from the image and estimate

their depths using direct search along the epipolar lines. Finally, the sparse depth

map is densified by smoothly propagating the sparse information out using a De-

launay triangulation on the image plane. This method was implemented on a flying

drone for collision avoidance. However, the method relies on very accurate camera

poses and high-quality image streams, which cannot be reliably acquired for low-cost

commercial drones, such as Parrot Bebop drones. In our system implementation, we

use ORB-SLAM [Mur-Artal et al., 2015] to construct a sparse depth map due to its

robustness in practice. Inspired by FLaME, we perform Delaunay triangulation to

propagate the sparse information.

4.1.1.2 Data-driven Approach

Monocular depth estimation can also be data-driven, i.e., learned from training data.

There is a large body of work that focuses on supervised learning methods [Liu et

al., 2014; Eigen and Fergus, 2015; Li et al., 2015; Liu et al., 2015; Laina et al., 2016;

Xu et al., 2017], which learns a mapping from monocular images to their depth maps.

By contrast, unsupervised learning methods do not need ground truth depth images

[Godard et al., 2017; Zhou et al., 2017]. Instead, stereo images are used. Deep neural

networks are trained to synthesis disparity maps for reconstructing stereo images.

56

Chapter 4. Depth Perception for Collision Avoidance

(d)(c)

(b)(a)

Figure 4.3: Monocular depth perception. (a) Original RGB image. (b) Regions of interest
masked out from the image: a texture-less wall (red), a wall under different lighting conditions
(orange and blue), and a table (green). (c) Gray-scale image encoding the dense depth map
predicted by a deep neural network pre-trained on MegaDepth. A darker color indicates a larger
depth. Note that the depth estimation is prone to errors. The edge of the wall (red) shall be
closer than the table (green). The wall under different lighting conditions (orange and blue)
shall have a smooth depth transition. (d) Delaunay triangulation of ORB-SLAM features. Note
that the features are sparse and distributed unevenly: the texture-less wall (red) occupies a large
region but has very few features. The grey-scale colors on the features encode the sparse scale
map ŜF (Eq. (4.4)). A darker color indicates a larger scale.

57

Chapter 4. Depth Perception for Collision Avoidance

Then, it is trivial to recover depth maps from the disparity maps.

One major issue for the data-driven approach is the acquisition of high-quality

training data. Most datasets of depth images [Saxena et al., 2009; Geiger et al., 2013;

Silberman and Fergus, 2011] and stereo image pairs [Geiger et al., 2013; Schöps et

al., 2017] are either small or collected in specific scenarios, which potentially affect

the generalizability of the methods.

MegaDepth [Li and Snavely, 2018] proposed to use multi-view internet photo col-

lections, a virtually unlimited data source, to generate training data. First, geometric

methods (Structure-from-Motion and Multi-View Stereo) are applied on the internet

photo collections to construct 3D models, hence, provide depth maps. Then, a seman-

tic filtering is used to identify images with large transient objects in their foreground,

such as selfies. These “selfie” images are dedicated to training the (ordinal) depths

of transient objects that are difficult to obtain during geometric construction. The

“non-selfie” images are used to train the (Euclidean) depths directly. Training on

the resulting datasets is able to generalize very well to other datasets and new en-

vironments. Therefore, we use a deep neural network pre-trained on MegaDepth to

provide a base dense depth map in our system implementation, despite it is prone to

making errors (Fig. 4.3c).

We re-scale the base depth map to ensure its scale is consistent with the sparse

depth map. This is conceptually equivalent to combining a handful set of base depth

maps with different scales into a final depth map. Similar to our usage of base depth

maps, CodeSlam [Bloesch et al., 2018] and BA-Net [Tang and Tan, 2018] also use

neural networks to recover many base depth maps and then recover the final depth

map as a linear combination of these bases.

In the following subsections, we formally define our problem setup and show the

depth map construction pipeline.

58

Chapter 4. Depth Perception for Collision Avoidance

4.1.2 Problem Formulation

Let P be the set of all image pixels. Our goal is to construct an accurate and dense

depth map,

D̂P = {d̂p|p ∈ P}. (4.1)

We are given two depth maps as the sources of input. First, ORB-SLAM estimates

an accurate but sparse depth map,

D̂GEO
F = {d̂GEOf |f ∈ F ⊂ P}, (4.2)

where F is sparse. Second, MegaDepth offers a dense but error-prone depth map,

D̂LRN
P = {d̂LRNp |p ∈ P}. (4.3)

4.1.3 Depth Map Construction Pipeline

We first analyze the problem and give an overview of our depth map construction

pipeline, then describe each step in detail.

Since monocular depth estimations are inherently scale ambiguous, both ORB-

SLAM and MegaDepth methods have different conventions to determine scales: the

scales of depth maps produced by ORB-SLAM are consistent over all frames, whereas

the scales of depth maps learned from MegaDepth are different for the frames. A con-

sistent scale is preferred in order to aggregate individual depth map into an occupancy

grid map (Fig. 4.2).

Therefore, we have to estimate the scale between the sparse and dense depth

maps. To this end, our depth map construction consists of three main steps. First,

we use the sparse depth map to construct a sparse scale map. Then, we upsample the

sparse scale map. Finally, we perform a pixel-wise scaling on the dense depth map to

59

Chapter 4. Depth Perception for Collision Avoidance

obtain our desired dense depth map.

4.1.3.1 Sparse Scale Map Construction

With a sparse depth map D̂GEO
F and a dense depth map D̂LRN

F , we first compute a

sparse scale map ŜF ,

ŜF = {ŝf =
d̂GEOf

d̂LRNf

|f ∈ F ⊂ P}. (4.4)

In practice, D̂GEO
F contains outliers, so that ŜF is contaminated with outliers as

well. In the ideal case, however, all ŝf ’s shall be the same. This is a useful prior

to prune those outliers. It is convenient to use the interquartile range (IQR) rule to

identify outliers that are far away from the median.

However, since the sparse set of features is not uniformly distributed in general

(Fig. 4.3d), features in the dense region dominate the overall distribution. Hence,

instead of applying the IQR rule globally on the whole set of ŜF , we apply it on a

local neighborhood set Neighbors(f) of each feature f .

There are two popular choices of neighborhood sets: features within some fixed

distance and k-nearest-neighbors. However, they are also not suitable when the fea-

tures are not uniformly distributed: neighbors from the dense region dominate again.

We define a neighborhood set based on the Delaunay triangulation of F . More

specifically, Neighbors(f) is defined as the set of vertices such that they belong to the

distance-1 or distance-2 neighborhood of vertex f on the triangulation. Our definition

of neighborhood ensures the neighbors are distributed around vertex f . Fig. 4.3d is

an example of the sparse scale map after outliers removed.

4.1.3.2 Dense Scale Map Construction

For each image pixel p ∈ P\F , we find a set of nearby vertices {pi} that enclose p in

the triangulation as shown in Fig. 4.5. Its estimated scale ŝp is a weighted sum of

60

Chapter 4. Depth Perception for Collision Avoidance

(b)(a)

Figure 4.4: Monocular dense depth map construction. Refer to Fig. 4.3. (a) Gray-scale image
encoding the dense scale map. A darker color indicates a larger scale. Note that the scale map
tends to preserve the boundaries between semantic objects. (b) Gray-scale image encoding the
dense depth map. A darker color indicates a larger depth. Note that the depths of the regions
marked in Fig. 4.3b are corrected.

p

p
1

p
2

p
3

p
4

p
6

p
5

q

Figure 4.5: Nearby vertices that enclose a pixel. For a pixel p within a triangle, we use 6 vertices
{p1, p2, ..., p6} to compute ŝp. For a pixel q on an edge, we use 4 vertices {p1, p2, p4, p4}.

61

Chapter 4. Depth Perception for Collision Avoidance

the scales of these nearby vertices, i.e.,

ŝp =

∑
iwpi ŝpi∑
iwpi

, (4.5)

where

wpi = exp(−
|d̂LRNp − d̂LRNpi

|2

σ2
LRN

), ∀i. (4.6)

The weight wpi is designed to consider object semantic information encoded in the

dense depth map. Since object semantics are used to guide the training in MegaDepth

dataset, pixels belonging to the same semantic object tend to have similar depths in

the predicted depth map. As a result, Fig. 4.4a is an example of reconstructed dense

scale map.

4.1.3.3 Dense Depth Map Construction

With Eq. (4.4) and (4.5), we obtain a dense scale map ŜP = {ŝp|p ∈ P}. Finally, we

use it to scale the dense depth map D̂LRN
P , and have our desired dense depth map,

D̂P = {d̂p = ŝpd̂
LRN
p |p ∈ P}. (4.7)

4.1.4 Evaluation

In this subsection, we evaluate our dense map reconstruction method on two real

world image datasets: Make3D [Saxena et al., 2009] and Kitti [Geiger et al., 2013].

Following previous works [Li and Snavely, 2018], we adopt three evaluation met-

rics to quantitatively assess its performance: (1) rooted mean square error (RMS):√
1
N

∑
i(d̂i − d∗i)2, (2) mean relative error (AbsRel): 1

N

∑
i
|d̂i−d∗i |
d∗i

, and (3) mean log10

error (LOG10): 1
N

∑
i | log10 d̂i − log10 d

∗
i |, in which N is the total number of ground-

truth depths, d∗i is the ground-truth depth at pixel i, and d̂i is the estimated depth

62

Chapter 4. Depth Perception for Collision Avoidance

using our method.

To test on the datasets, we use the neural network, trained on MegaDepth only,

to produce the input dense depth maps. In addition, we synthesis the input sparse

depth maps as follows. We randomly sample κ% of ground truth depths to form

sparse depth maps, κ = 1, 2, 3, 4, 5. To emulate outliers, we randomly sample 1%

from the sparsely sampled depths, and multiply them by a random number between

3 to 10. For the rest 99% samples, we corrupted them with noise, to emulate noisy

measurements.

Make3D To test on Make3D, we follow the protocol of prior work [Liu et al., 2015]

to remove ground truth depths larger than 70m (since Make3D data is unreliable at

large distances). Table 4.1 summarizes the results. Results from other algorithms are

reported in [Li and Snavely, 2018]. The bottom block of Table 4.1 shows that our

method outperforms prior state-of-the-art results. As expected, all errors decrease

monotonically when we increase κ.

KITTI Next, we evaluate our method on the KITTI test set based on the split

of [Eigen et al., 2014]. Table 4.2 summarizes the results. Similar to the case in

Make3D, our method achieves the state-of-the-art accuracy, and all errors decrease

monotonically when we increase κ.

4.1.5 Discussion

The evaluation results show that our method is able to reconstruct dense and accu-

rate depth map for obstacle perception. Not surprisingly, increasing the number of

accurate input depths improves the overall accuracy.

While our method for depth perception is shown to be effective, it is not ready

to be used in an overall system evaluation for photo-taking in the current stage, due

63

Chapter 4. Depth Perception for Collision Avoidance

Training set Method RMS AbsRel LOG10

Make3D [Karsch et al., 2014] 9.2 0.355 0.127
[Liu et al., 2014] 9.49 0.355 0.137
[Liu et al., 2015] 8.6 0.314 0.119
[Li et al., 2015] 7.19 0.278 0.092
[Laina et al., 2016] 4.45 0.176 0.072
[Xu et al., 2017] 4.38 0.184 0.065

MegaDepth [Li and Snavely, 2018] 5.49 0.298 0.115
MegaDepth+Make3D 4.26 0.176 0.069
MegaDepth+1% Ours 4.17 0.155 0.062
MegaDepth+2% 3.68 0.127 0.050
MegaDepth+3% 3.42 0.112 0.044
MegaDepth+4% 3.24 0.103 0.041
MegaDepth+5% 3.12 0.097 0.038

Table 4.1: Results on Make3D dataset. The first column shows the training datasets. For our
method, κ% metric observations are used to synthesis the sparse depth maps. Lower is better
for all error metrics. The underlined numbers are prior state-of-the-art results.

Training set Method RMS AbsRel LOG10

KITTI [Eigen et al., 2014] 6.31 0.203 0.081
[Liu et al., 2016] 6.52 0.202 0.080
[Zhou et al., 2017] 6.86 0.208 0.082
[Godard et al., 2017] 5.93 0.148 0.060

MegaDepth [Li and Snavely, 2018] 6.87 0.282 0.108
MegaDepth+KITTI 5.90 0.141 0.057
MegaDepth+1% Ours 3.22 0.085 0.026
MegaDepth+2% 2.82 0.078 0.022
MegaDepth+3% 2.61 0.075 0.019
MegaDepth+4% 2.46 0.073 0.018
MegaDepth+5% 2.36 0.072 0.012

Table 4.2: Results on KITTI dataset. The first column shows the training datasets. For our
method, κ% metric observations are used to synthesis the sparse depth maps. Lower is better
for all error metrics. The underlined numbers are prior state-of-the-art results.

64

Chapter 4. Depth Perception for Collision Avoidance

to a major hardware constraint: the Parrot Bebop’s forward-facing camera has a

very limited viewing angle. The flying camera has to fly around slowly to build the

occupancy grid map before the system plans for a collision-free path, which adversely

affects the seamless photo-taking experience. This limitation can be overcome by

using a wide angle camera, such as an omnidirectional camera. Existing SLAM

systems for omnidirectional cameras [Caruso et al., 2015] can be used to estimate

the sparse depth maps. In addition, the MegaDepth dataset requires modification to

train a neural network for the omnidirectional cameras as well.

4.2 Summary

We are pursuing a modular approach to the collision avoidance problem. In this

chapter, we focused on the mapping module that constructs an accurate depth map.

To realize the collision avoidance capability, we integrate our depth map construction

pipeline into the collision avoidance component as shown in Fig. 4.2. The integration

details are described in the next system implementation chapter.

65

Chapter 5

System Implementation

We show the system implementation details in this chapter. First, we provide system

hardware and software setup (Sec. 5.1). Then, we describe the system components

(Sec. 5.2) implementing the system functions for our explore-and-compose paradigm

(Sec. 2.2).

5.1 System Hardware and Software Setup

5.1.1 Hardware

Our system uses a Parrot Bebop drone with a built-in forward-facing camera. The

user’s mobile device is an ASUS Google Nexus 7 (2012) tablet with a 7.0” multi-touch

display, running Android version 5.1. Both the drone and the tablet are connected

via Wi-Fi to a laptop PC with an Intel Core i7 processor and a GTX 1060 GPU.

5.1.2 Software

We use an open-source drone driver, Bebop Autonomy [AutonomyLab, 2018], to com-

municate with the Bebop at 30 Hz. The Bebop runs low-level controllers onboard.

66

Chapter 5. System Implementation

intermediate POVdesired composition

Gesture Recognition

Camera Localization

Object Tracking

Trajectory Planning

Drone Control

image

controlgesture current composition low-level

Photo Composition Collision Avoidance

image

panning/zooming/sampling/restore

POV
current

POV
target

POV
desired

compositioncurrent
composition

current

current POV

current POV

POV
current POVcurrent

selection
object

Figure 5.1: Overview of the system architecture.

The tablet runs Rosjava and detects gestures using Android’s gesture detection li-

brary. The PC handles all other computations. It also hosts the Robot Operating

System framework, which is used to establish communication among the drone, the

tablet, and the laptop PC.

5.2 System Components

Fig. 5.1 presents an overview of the system architecture tightly integrating the seven

main system components. Information flow among the system components is anno-

tated. Next, we describe each system component in detail.

5.2.1 Gesture Recognition

XPose uses Android’s standard gesture detection library to detect three main types of

gestures on the touchscreen (Fig. 5.2): single-finger swiping gestures, multi-finger ges-

tures, and button clicking gestures. Single-finger gestures mainly consists of encircling

gesture for object selection (Fig. 1.3a) and dragging gesture for object composition

(Fig. 1.3g). Multi-finger gestures refer to panning/zooming gestures as introduced in

Fig. 2.1. Button clicking gestures enable various main system functions such as POV

67

Chapter 5. System Implementation

Gesture Recognition Object Tracking

Trajectory Planning

gesture

object selection

Photo Composition
desired compositionsingle-finger

multi-finger (panning/zooming)

button click POV sampling

POV restore

Figure 5.2: Information flow for gesture recognition component.

sampling (Fig. 1.3b) and POV restore (Fig. 1.3f).

5.2.2 Camera Localization

Unlike hand-held cameras, our flying camera explores POVs globally. It must have

a greater awareness of the surrounding environment, and localization becomes a cru-

cial issue. XPose uses a state-of-the-art monocular visual SLAM algorithm, ORB-

SLAM [Mur-Artal et al., 2015], to build a SLAM map and localize the camera with

respect to a fixed world coordinate. Localization provides real-time camera POVs.

5.2.3 Object Tracking

For robust object selection and tracking, we exploit ORB-SLAM and use the sparse

points produced by the algorithm to represent objects. ORB-SLAM is a feature-based

visual SLAM system. It provides 2D-to-3D point correspondence: each 2D feature

point exacted from the image is associated with a 3D map point in the SLAM map.

For object selection, the 2D feature points encircled by the user’s stroke and their

corresponding 3D map points are used to represent an object. All selected objects

are stored and used to realize object tracking in real time (Fig. 5.3).

68

Chapter 5. System Implementation

Object Tracking

Drone Control

Photo CompositionGesture Recognition

Camera Localization

image

object selection

objects
object

current POV current composition

objects

Figure 5.3: Information flow for object tracking component.

For object tracking, we need to display a bounding box around each selected

object on the image as a visual cue. First, for simplicity, we compute the center of the

bounding box as the 2D projection of the centroid of each object. An object centroid

is estimated as a weighted average of its 3D map points. We assume the points closer

to the center of the selected region are more important and therefore have higher

weights. Then, the bounding box size is continuously estimated by computing the

distance from the camera to the object centroid.

The center of the bounding box is a simplified representation of an object’s com-

position location. For simplicity, we directly use the center of the bounding box as

the actual composition location, and the ending point of the direct manipulation ges-

ture as the desired composition location. Following the definition in Eq. (3.1), the

composition error is simply the distance between the two points on the image plane.

This object-tracking implementation, based on ORB-SLAM, is robust against

many practical issues common to drone-mounted cameras, such as temporary frame

drops, occlusions, camera exposure changes, etc. Unlike (semi-)dense SLAM algo-

rithms (e.g., [Concha and Civera, 2015; Engel et al., 2014a; Pizzoli et al., 2014]),

ORB-SLAM tracks a relatively sparse set of features, but it is sufficient for object

tracking in our experiment, provided, of course, enough feature points are extracted

from the objects of interest.

69

Chapter 5. System Implementation

Trajectory Planning

Collision AvoidanceGesture Recognition

Camera Localization

POV restore

POV sampling

panning/zooming

Photo Composition

waypoints

target POV

current POV

current POV

desired POV

Figure 5.4: Information flow for trajectory planning component. Green block is for POV
sampling. Amber block is for POV restore. Blue block is for direct view manipulation.

5.2.4 Photo Composition

Photo composition has been thoroughly studied in Chapter 3. Essentially, it translates

user gestures to a user intended POV.

5.2.5 Trajectory Planning

The system generates several types of trajectories for POV sampling, POV restore,

and direct view manipulation. Fig. 5.4 illustrates the information flow, in which

the green block is for POV sampling, the amber block is for POV restore, and the

blue block is for direct view manipulation. Next, we describe each type in detail

respectively.

5.2.5.1 POV Sampling

We now describe POV sampling trajectory under each exploration mode. See Fig. 2.2.

70

Chapter 5. System Implementation

Orbit To start the Orbit mode, XPose requires a main object of interest to be

selected. The Orbit mode generates a full circular trajectory of POVs looking inward

at the object. Formally speaking, the circle is essentially a line of latitude on a sphere,

of which the center is the object centroid in the map, and the radius of the sphere is

the distance from the object centroid to the camera position where the Orbit mode

starts. For each camera position along the circle, a camera orientation is computed

to maintain the object composition on the image plane.

The sample shots are planned to be taken evenly along the circle. However, since

a drone can hardly reach a planned POV exactly, the sampling condition is relaxed

from reaching an exact POV to entering a region of satisfied POVs. The region is

bounded by various factors: the composition error, the distance difference to the

object centroid, the latitude and longitude angle differences of the sphere centered at

the object.

Pano The Pano mode does not require an object of interest to be selected. It

generates a trajectory of POVs by spinning around at a fixed point. In other words,

the POVs have the same camera position and tilt angle, but different camera pan

angles.

The sample shots are taken at evenly distributed pan angles. Again, a region

of satisfied POVs is used, which is bounded by the position displacement and the

orientation difference.

Zigzag The trajectory generation and execution of the Zigzag mode are very similar

to that of the Orbit mode. The Zigzag mode also requires a main object of interest

to be selected. The major difference is the sampling pattern. Considering the sphere

centered at the object, the Zigzag mode samples POVs on a patch of the sphere by

deviating locally from the camera position where the Zigzag mode starts. The patch

71

Chapter 5. System Implementation

is discretized as multiple circular arcs along different latitudes of the sphere. During

execution, the drone moves along each arc one by one.

5.2.5.2 POV Restore

For POV restore, the trajectory is simply a line segment connecting the current POV

and the target POV to be restored. Potential collisions are handled in the next

collision avoidance component.

The end of a POV restoring trajectory is a region of POVs around the target

POV, which is bounded by the position displacement and the orientation difference.

5.2.5.3 Direct View Manipulation

For direct view manipulation, the trajectory is also a line segment, but connecting

from the current POV to the user desired POV according to different gestures.

The target POV for a panning/zooming gesture (Fig. 2.1) is computed based on

the current POV and the corresponding intended camera motion. For example, the

target POV for a zooming-in gesture is a POV in front of the current image plane

along the camera’s principal axis.

The target POV for direct object composition is simply the desired POV computed

from the photo composition component.

5.2.6 Collision Avoidance

As illustrated in Fig. 4.2, we pursue a modular approach to collision avoidance. The

collision avoidance component consists of two main parts: mapping and planning. For

mapping, we aggregate individual depth maps to construct a metric-scaled occupancy

grid map (Sec. 5.2.6.1). Then, we use the standard potential field algorithm to plan

a collision-free path (Sec. 5.2.6.2).

72

Chapter 5. System Implementation

(d)(c)

(b)(a)

Figure 5.5: Local depth map as a 3D point cloud. (a) RGB image input. (b) Our accurate
dense depth map (colored point cloud) and the sparse depth map estimated by ORB-SLAM
(white point cloud). The depth maps are visualized in 3D. The bottom plane corresponds to
the image plane.

5.2.6.1 Occupancy Grid Mapping

There are two steps to construct a metric-scaled occupancy grid map as follows.

Depth Maps in Metric Scale First, we construct local depth maps as 3D point

clouds using our pipeline proposed in Sec. 4.1. Fig. 5.5 shows an example. Fig. 5.5b is

the resulting depth map visualized in 3D. Since the scale of our constructed depth map

is consistent with the scale provided by ORB-SLAM. To recover the metric scale, we

adopt a scale estimation method using the onboard ultrasonic altitude measurement

[Engel et al., 2014b].

Aggregated Occupancy Grid Map Then, we aggregate the local depth map point

clouds by transforming them to the world frame using their corresponding camera

poses [Hornung et al., 2013].

73

Chapter 5. System Implementation

(b)(a)

Figure 5.6: Aggregated occupancy grid map. (a) The flying camera (circled in black) and the
scene. Regions masked with different colors correspond to the same colored occupancy grids
in (b). (b) The aggregated occupancy grid map. The RGB colored visual marker indicates the
flying camera pose landed on the floor.

(b)(a)

Figure 5.7: Local trajectory planning. The small green sphere indicates the user target POV, i.e.,
the input to the collision avoidance component. The small red sphere indicates the intermediate
POV, i.e., the output from the component. The big white sphere indicates the local region in
which the occupancy grids are considered. (a) Very few occupancy grids are within the flying
camera’s local region. The intermediate POV pulls the flying camera towards the target POV.
(b) The flying camera is close to obstacles that push the flying camera away.

74

Chapter 5. System Implementation

Drone Control

Collision Avoidance

current composition

current POV

Object Tracking

intermediate POV

Camera Localization

low-level control

Kalman Filter

estimated true POV

Figure 5.8: Information flow for drone control component.

5.2.6.2 Local Trajectory Planning

Next, we apply the potential field algorithm to plan for a collision-free path based

on the occupancy grid map. Fig. 5.7 shows an example. We apply the potential field

algorithm to generate an intermediate POV (small red sphere) based on the current

camera pose and the user target POV (small green sphere) at each time step.

5.2.7 Drone Control

XPose is implemented based on the Parrot Bebop quadcopter, with a forward-facing

onboard camera. The drone has a built-in digital stabilization module to fix the

camera’s roll. We model the state of the drone together with its onboard camera as

s = [Φ,Θ, Ψ̇, ż, ψ, θ]T with the following 6 Degrees-of-Freedom (DoFs): the drone’s

roll Φ and pitch Θ angles, yaw rotational velocity Ψ̇, vertical velocity ż, and the

camera’s pan ψ and tilt θ angles. A control command u = [Φ̄, Θ̄, ¯̇Ψ, ¯̇z, ψ̄, θ̄]T sets the

reference values for the onboard firmware to control the 6 DoFs respectively.

We use 6 independent PID controllers for each DoF. The control gains are tuned

by assuming that the SLAM map is in the metric unit.

XPose controls the drone to reach the intermediate POV generated by the collision

avoidance component. If there are any selected objects of interest, the controls of pan

75

Chapter 5. System Implementation

and tilt angles are overwritten in order to directly minimize the composition error.

We define FW as the world coordinate frame. We further denote the intermedi-

ate POV as p̂W = [x̂W, ŷW, ẑW, ψ̂W, θ̂W]T , which consists of 3-DoF camera position

[x̂W, ŷW, ẑW]T and 2-DoF orientation (pan ψ̂W and tilt θ̂W).

During trajectory execution, the POV estimated by ORB-SLAM cannot be di-

rectly used, due to the delay caused by video transmission (∼200ms) and processing

(∼20ms). A delayed estimation of POV may cause oscillating behaviors while con-

trolling the system at a high update rate. To compensate the delay, a Kalman Filter

is used to estimate the true POV with a constant-velocity model. This estimated

POV at time t, denoted as pW
t = [xWt , y

W
t , z

W
t , ψ

W
t , θ

W
t]T , is then used to compute

the low-level control commands. While our method serves the purpose of system

evaluation (Chap. 6), there are more sophisticated methods [Engel et al., 2014b] if

needed.

Finally, the 3-DoF camera position [x̂W, ŷW, ẑW]T is achieved by controlling the

drone’s roll Φ and pitch Θ angles, and vertical velocity ż. The tilt angle θ̂W is achieved

by controlling the camera’s tilt θ. The pan angle ψ̂W is jointly controlled by the yaw

rotational velocity Ψ̇ and the camera’s pan ψ.

76

Chapter 6

System Evaluation

We conducted a user study to compare XPose and a joystick interface, in order to

examine the feasibility of XPose and quantify the performance differences between

the two.

6.1 Experimental Setup

The study consists of two sets of experiments. The first set focuses on interaction

design. It evaluates XPose’s design of POV exploration and of visual composition

separately. To avoid confounding factors resulting from the system implementation,

it places the flying camera in a motion capture studio, which provides highly accurate

camera localization and object tracking at 50 Hz. The second set of experiments focus

on the overall system performance in more realistic settings, without the help of a

motion capture system.

We compare XPose with one of the Parrot Bebop’s native interfaces, the Joypad

mode in the FreeFlight Pro app. Joypad emulates a joystick interface on a touchscreen

and provides the user low-level manual control of the drone (Fig. 1.2a). We use it as

the baseline for comparison, as joysticks and emulated joystick interfaces are widely

77

Chapter 6. System Evaluation

Exploration Composition

(a) (b)

Figure 6.1: Interaction design evaluation setup. (a) Evaluation of POV exploration. Text labels
are pinned at different orientations on the board. (b) Evaluation of photo composition. Four
translucent colored circles indicate possible composition locations in the photo.

used in commercial drones available today. In addition, they do not depend on GPS

availability, which is the intended usage scenario for XPose.

6.2 Interaction Design Evaluation

6.2.1 Evaluation of POV Exploration

The explore stage aims to find potentially interesting POVs. We designed a task to

evaluate the effectiveness of POV exploration in a controlled lab setting. The setup

consists of a transparent board with several target regions of interest on both sides

(Fig. 6.1a). Each target region is made of a piece of circular cardboard and contains

several text labels pinned at different orientations. One can see the text on the label

only from a certain viewing angle range. The text on each label is unique. In each

trial, the flying camera is initially placed at a fixed location on the floor 2 meters away

from the board. The participant is instructed to face away from the flying camera.

S/he interacts with the flying camera through the tablet only and has no direct line

sight. According to our interview study, drones often fly out of the direct sight of

78

Chapter 6. System Evaluation

operators. The participant is asked to read out all the text labels on the board as fast

as possible. The trial terminates when the participant believes that s/he has finished

reading all the text labels and lands the flying camera. The trial pauses, if the flying

camera crashes. The drone is placed on the floor at the crash site. The trial resumes

after the participant relaunches the drone and continues with the task.

We measured the completion time for each trial and the coverage, i.e., the per-

centage of correctly reported text labels.

6.2.2 Evaluation of Visual Composition

Once a potential POV is identified, the compose stage aims to place objects of interest

at desired locations in the photo by refining the POV. We designed another evaluation

task for composition, with a similar setup. In each trial, the participant sees in the

viewfinder four circles of different colors, placed in the photo frame according to the

rule of thirds (Fig. 6.1b). S/he is asked to put a specified target region at the location

of a randomly assigned circle so that they match as well as possible.

Again, we measured the completion time for each trial as well as the composition

error (Eq. (3.1)), which provides one measure of composition quality.

6.2.3 Experimental Design

Participants 8 volunteers (2 female, 6 male, aged 23–30) were recruited from the

university community and the IT industry. All participants had prior experience

taking photos, and 3 had experience flying drones.

Within-Participants Design Each participant used each interface to perform each

of the two evaluation tasks three times. The order of trying the two interfaces was

counterbalanced. The two tasks were ordered sequentially, as we were not interested

79

Chapter 6. System Evaluation

2%

150

70

30

(a) (b)

(c) (d)

Exploration

Composition

Er
ro

r

Photo-taking

(e)

Trial 1 Trial 2 Trial 3Trial 1 Trial 2 Trial 3

Trial 1 Trial 2 Trial 3Trial 1 Trial 2 Trial 3

Easy Hard

C
om

pl
et

io
n

Ti
m

e
(s

)
C

om
pl

et
io

n
Ti

m
e

(s
)

C
ov

er
ag

e

C
om

pl
et

io
n

Ti
m

e
(s

)

Joystick
XPose

100%

80%

90%

200

0

100

50

4%

0

1%

3%

50

40

60

150

50

100

0

Figure 6.2: Performance comparison between the joystick interface and XPose in interaction
design evaluation. Error bars indicate 95% confidence intervals.

in comparing between different tasks. Before the experiment, each participant was

instructed for 10 minutes for each interface to get familiar with it.

6.2.4 Results

We conducted two-way repeated measure ANOVA to analyze the results.

POV Exploration The difference between XPose (93.1%) and the joystick interface

(93.6%) in POV coverage was not significant (all p > 0.05). See Fig. 6.2a. The

participants were able to identify most text labels (POVs) using either interfaces.

However, Fig. 6.2b shows that XPose (85.4s) was significantly faster (F1,7 =

46.36, p < 0.001, η2 = 0.87) than the joystick interface (153.9s). We also observed

80

Chapter 6. System Evaluation

a significant trend (F2,14 = 14.72, p < 0.001, η2 = 0.68) on completion time over

the trials, indicating a learning effect for participants for both interfaces. Since most

participants were not familiar with drone flying, this effect was expected. However,

there was no significant interaction between the effect of interface and that of a trial

on the completion time (p > 0.05), suggesting that the learning curves of the two

interfaces are similar.

Visual Composition The composition error using XPose (0.86%) was smaller than

that of the joystick interface(1.28%). See Fig. 6.2c. While the difference was statis-

tically significant (F1,7 = 21.336, p = 0.002, η2 = 0.75), both errors were about 1%

and unlikely to make much difference in most photos. We did not observe any other

main effects or interaction effects (all p > 0.05).

Again, Fig. 6.2d shows that XPose (34.2s) was significantly faster (F1,7 = 24.36, p =

0.002, η2 = 0.78) than the joystick interface (47.8s). The participants also became

significantly faster over trials (F2,14 = 7.65, p = 0.006, η2 = 0.52), and there was no

significant interaction between the effect of interface and that of trial on the comple-

tion time (p > 0.05).

Overall, XPose was significantly faster than the joystick interface in both POV

exploration and photo composition, while achieving a comparable level of task per-

formance measured in POV coverage or composition error. Although the number

of participants in the study is relatively small, the confidence intervals are clearly

separated (Fig. 6.2b,d).

6.3 System Performance Evaluation

We conducted the second set of experiments to evaluate the system performance using

more realistic photo-taking settings, by removing the motion capture system. We use

81

Chapter 6. System Evaluation

Exploration Composition

(a) (b)

Figure 6.3: System performance evaluation setup for photo-taking of one object of interest.
(a) The enlarged cartoon figures are shown next to the merry-go-round in a semi-outdoor
environment. (b) Each double circle indicates a possible composition location for the cartoon
figure, and its size indicates the desired size of the figure in the photo.

two different setups: one mimics the scenario of searching and composing one object

of interest; the other focuses on multiple objects composition.

6.3.1 Evaluation of Photo-taking - Single Object of Interest

We set up a merry-go-round in a semi-outdoor environment and hid cartoon figures

inside or on top of the merry-go-round (Fig. 6.3a). The objective is to find a specified

cartoon figure and compose the photo suitably. In each trial, the flying camera is

initially placed at a fixed location on the floor 3 meters away from the merry-go-

round. As usual, the participant has no direct line of sight of the flying camera or

the merry-go-round. The participant is asked to take a photo of a specified cartoon

figure and compose the photo so that the figure appears at one of the five locations

marked by double circles in the viewfinder (Fig. 6.3b). Further, the figure must fully

cover the inner circle and be fully enclosed by the outer circle. The trial starts after

the participant launches the drone and terminates when the participant takes a shot.

Each trial uses a different cartoon figure.

We measured the task completion time for each trial and the success rate.

82

Chapter 6. System Evaluation

Exploration Composition

(a) (b)

Figure 6.4: System performance evaluation setup for photo taking of multiple objects of interest.
(a) The highlighted cat face and the person’s upper body are objects of interest. (b) Each
bullseye region indicates a possible composition location for the object of interest.

6.3.2 Evaluation of Photo-taking - Multiple Objects of Interest

We set up a cat-face statue in a semi-outdoor environment (Fig. 6.4a). The objective

is to take a selfie with the statue by applying the rule of thirds. In each trial, the

participant stands at a fixed location near the statue. The flying camera is initially

placed at a fixed location on the floor 3 meters away in front of the participant. In

this setting, the participant is free to have a direct line of sight of the flying camera.

The participant is asked to take a photo so that his/her upper body and the cat face

appear respectively at two locations marked by the bullseye regions in the viewfinder

(Fig. 6.4b).

The bullseye regions are designed to measure composition accuracy. If an object of

interest (i.e., the upper body or the cat face) overlaps with its corresponding bullseye’s

inner circle, a score of 3 is given. Otherwise, a score of 2 is given for overlapping with

the middle circle, a score of 1 is given for overlapping with the outer circle, and no

score is given for non-overlapping. The composition accuracy is computed as the

product of the two scores. The trial starts after the participant launches the drone

and terminates when the participant takes a shot.

83

Chapter 6. System Evaluation

(a) (b)

Single Object of Interest

Easy Hard

C
om

pl
et

io
n

Ti
m

e
(s

)

Joystick
XPose

150

50

100

0

Side-by-side Diagonal

C
om

pl
et

io
n

Ti
m

e
(s

) 80

0

40

(c)
Side-by-side Diagonal

Ac
cu

ra
cy

 (s
co

re
) 9

4

Multiple Objects of Interest

Figure 6.5: Performance comparison between the joystick interface and XPose in overall system
performance evaluation. Error bars indicate 95% confidence intervals.

We measured the task completion time for each trial and the composition accuracy.

6.3.3 Experimental Design

Participants For each evaluation setup, 8 new volunteers were recruited from the

university community. None participated in the earlier experiments. All participants

had experience taking photos, and none of them are experienced drone pilots.

Within-Participants Design For the evaluation using a single object of interest,

each participant used each interface to perform the task with two difficulty levels,

one having an easy-to-find figure and one having a harder-to-find figure. The order

of trying the interfaces was counterbalanced.

For the evaluation using multiple objects of interest, each participant used each

interface to perform the task with two types of compositions: side-by-side composition

and diagonal composition. A side-by-side composition refers to using the two top (or

the two bottom) bullseye regions. A diagonal composition refers to using one top and

one bottom bullseye regions. The order of trying the interfaces was counterbalanced.

6.3.4 Results

We conducted two-way repeated measure ANOVA to analyze the results.

84

Chapter 6. System Evaluation

Single Object of Interest The success rate was 100%, as all specified cartoon figures

were found and composed as required. We analyzed the completion time (Fig. 6.5a).

XPose (57.1s) was significantly faster (F1,7 = 19.12, p = 0.003, η2 = 0.73) than

the joystick interface (85.3s). The effect size value (η2 = .73) again, suggests a high

practical difference between the two interfaces. As expected, completing the easy task

was significantly faster (F1,7 = 52.79, p < 0.001, η2 = 0.88) than completing the hard

task. Interestingly, there was significant interaction (F1,7 = 6.10, p = 0.043, η2 =

0.47) between the effect of interface and that of difficulty on the completion time.

Increased difficulty caused a large increase in the completion time for the joystick

interface, but it caused a smaller increase for XPose. We propose the following reason.

In the more difficult task, the cartoon figure was partially occluded. XPose provided

a gallery preview so that participants could examine each sample shot closely and

find the partially occluded figure faster.

Multiple Objects of Interest We analyzed both the completion time (Fig. 6.5b)

and the composition accuracy (Fig. 6.5c). XPose was not only significantly faster

(F1,7 = 71.13, p < 0.001, η2 = 0.91) but also significantly more accurate (F1,7 =

10.34, p = 0.015, η2 = 0.60) than the joystick interface. The effect size values

(η2 = .91 and 0.60) both suggest a high practical difference between the two inter-

faces. Interestingly, composing a side-by-side photo is both significantly faster (F1,7 =

35.88, p < 0.001, η2 = 0.84) and more accurate (F1,7 = 6.33, p = 0.04, η2 = 0.48)

than composing a diagonal one. A potential reason is that the height of the statue

is about the same as the height of a person. It is relatively easy for participants to

compose side-by-side shots.

Similar to the case in composing single object of interest, there was significant

interaction (F1,7 = 12.22, p = 0.01, η2 = 0.63) between the effect of interface and

that of composition type on the completion time. Again, increased difficulty caused a

85

Chapter 6. System Evaluation

large increase in the completion time for the joystick interface, but it caused a smaller

increase for XPose. In this setup, a diagonal composition requires to fly a longer

distance as compared with a side-by-side composition. XPose freed the participants

from tedious control through autonomy.

6.4 Discussion

The evaluation results show that XPose outperforms the joystick interface in POV

exploration, in visual composition, and in photo-taking. The joystick interface forces

the user to pilot the drone manually through low-level motion commands. Doing so

while searching for a good POV at the same time is difficult and tedious. Further,

the communication delay between the flying camera and the touchscreen mobile de-

vice often causes the camera to overshoot the desired pose. Our explore-and-compose

approach demonstrates great potentials for photo-taking with flying cameras. While

our experiments tested only a small range of representative tasks, we are pleased to

see that our interaction design enabled more efficient POV exploration with prede-

fined exploration modes and easier photo composition with direct manipulation of

objects of interest. POV exploration and photo composition are essential sub-tasks

for photo taking. Creating more efficient and user-friendly approaches to these tasks

contribute significantly to better photo taking. Participants expressed that XPose is

more natural and intuitive to use: “Yours (XPose) is easier to use as I can focus on

the task instead of flying the drone.” More encouragingly, the two stages, explore and

compose, worked well together for more realistic photo-taking tasks in a GPS-denied

semi-outdoor environment. Together, the results of our user study suggest that XPose

clearly represents a step forward towards a practically useful system.

86

Chapter 7

Conclusion

We presented XPose, a touch-based interactive system for flying camera photo-taking.

XPose introduces the explore-and-compose paradigm to photo-taking and provides a

unified interaction model for flying cameras. It enables a low-cost quadcopter to fly

in a GPS-denied environment and provides intuitive and effective interactions that

aid the user for photo-taking in real time. As a result, the user focuses on taking

photos, instead of piloting the drone.

Our experience highlights the importance of integrating interaction design (Chap. 2)

and system implementation (Chap. 5). Good interaction design must be rooted in

realistic assumptions of system capabilities, and new system implementation tech-

nologies open up opportunities for innovative interaction design.

From the interaction design perspective, the explore-and-compose paradigm cur-

rently focuses on photo-taking in static scenes. We believe that the underlying design

idea is useful for dynamic scenes as well, but the interaction design and the sys-

tem implementation become more challenging. In addition, the explore-and-compose

paradigm could also be adopted in other modalities, such as mouse-based interfaces.

From the system implementation perspective, our current prototype works suc-

87

Chapter 7. Conclusion

cessfully in indoor, semi-outdoor, and limited outdoor settings, with two main limi-

tations. First, we rely on a laptop computer for most of the required computation,

because the Parrot Bebop drone has a very limited onboard processing power. Sec-

ond, due to the limited viewing angle of the forward-facing camera on the Parrot

Bebop, the collision-free path planning cannot be seamlessly integrated. With rapid

advances in hardware technology and decreasing cost, we expect to overcome these

limitations in the near future.

While our prototype implementation still has several limitations, it is a first step

towards the ultimate vision of a flying camera for everyday use.

88

Bibliography

[AirSelfie, 2018] AirSelfie. The only portable flying camera integrated in your photo
cover. http://www.airselfiecamera.com/, 2018.

[AutonomyLab, 2018] AutonomyLab. Bebop autonomy. https://github.com/

autonomylab/bebop_autonomy, 2018.

[Ballou, 2001] P Ballou. Improving pilot dexterity with a telepresent rov. In Proc.
the Vehicle Teleoperation Interfaces Workshop, ICRA, 2001.

[Bansal and Daniilidis, 2014] Mayank Bansal and Kostas Daniilidis. Geometric urban
geo-localization. In CVPR, 2014.

[Bebop, 2018] Bebop. Parrot bebop drone. http://global.parrot.com/au/

products/bebop-drone, 2018.

[Bloesch et al., 2018] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan
Leutenegger, and Andrew J Davison. Codeslamlearning a compact, optimisable
representation for dense visual slam. In CVPR, 2018.

[Booij et al., 2009] Olaf Booij, Zoran Zivkovic, et al. The planar two point algorithm.
IAS technical report, University of Amsterdam, 2009.

[Bowman et al., 1997] Doug A Bowman, David Koller, and Larry F Hodges. Travel
in immersive virtual environments: An evaluation of viewpoint motion control
techniques. In Virtual Reality Annual International Symposium, 1997.

[Burtnyk et al., 2002] Nicholas Burtnyk, Azam Khan, George Fitzmaurice, Ravin
Balakrishnan, and Gordon Kurtenbach. StyleCam: interactive stylized 3D nav-
igation using integrated spatial & temporal controls. In UIST, 2002.

[Byrod et al., 2008] Martin Byrod, Zuzana Kukelova, Klas Josephson, Tomas Pajdla,
and Kalle Astrom. Fast and robust numerical solutions to minimal problems for
cameras with radial distortion. In CVPR, 2008.

89

http://www.airselfiecamera.com/
https://github.com/autonomylab/bebop_autonomy
https://github.com/autonomylab/bebop_autonomy
http://global.parrot.com/au/products/bebop-drone
http://global.parrot.com/au/products/bebop-drone

BIBLIOGRAPHY

[Camposeco et al., 2017] Federico Camposeco, Torsten Sattler, Andrea Cohen, An-
dreas Geiger, and Marc Pollefeys. Toroidal constraints for two-point localization
under high outlier ratios. In CVPR, 2017.

[Caruso et al., 2015] David Caruso, Jakob Engel, and Daniel Cremers. Large-scale
direct slam for omnidirectional cameras. In IROS, 2015.

[Cheerson, 2018] Cheerson. Experience the flying dream. http://www.

cheersonhobby.com/en-US/, 2018.

[Choi and Park, 2015] Sung-In Choi and Soon-Yong Park. A new 2-point absolute
pose estimation algorithm under planar motion. Advanced Robotics, 2015.

[Concha and Civera, 2015] Alejo Concha and Javier Civera. DPPTAM: Dense piece-
wise planar tracking and mapping from a monocular sequence. In IROS, 2015.

[DJI, 2018a] DJI. DJI Drones. http://www.dji.com/products/drones, 2018.

[DJI, 2018b] DJI. Inspire 1 pro-dual remote controllers mode. http://wiki.dji.

com/en/index.php/Inspire_1_Pro-Dual_Remote_Controllers_Mode, 2018.

[Dragicevic et al., 2008] Pierre Dragicevic, Gonzalo Ramos, Jacobo Bibliowitcz,
Derek Nowrouzezahrai, Ravin Balakrishnan, and Karan Singh. Video browsing
by direct manipulation. In ACM SIGCHI, 2008.

[Dronestagram, 2017] Dronestagram. International drone
photography contest. http://www.dronestagr.am/

2017-international-drone-photography-contest, 2017.

[Eigen and Fergus, 2015] David Eigen and Rob Fergus. Predicting depth, surface
normals and semantic labels with a common multi-scale convolutional architecture.
In ICCV, 2015.

[Eigen et al., 2014] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep network. In NIPS, 2014.

[Elmqvist et al., 2008] Niklas Elmqvist, Mihail Eduard Tudoreanu, and Philippas
Tsigas. Evaluating motion constraints for 3d wayfinding in immersive and desktop
virtual environments. In ACM SIGCHI, 2008.

[Engel et al., 2014a] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM:
Large-scale direct monocular slam. In ECCV, 2014.

[Engel et al., 2014b] Jakob Engel, Jürgen Sturm, and Daniel Cremers. Scale-aware
navigation of a low-cost quadrocopter with a monocular camera. RAS, 2014.

90

http://www.cheersonhobby.com/en-US/
http://www.cheersonhobby.com/en-US/
http://www.dji.com/products/drones
http://wiki.dji.com/en/index.php/Inspire_1_Pro-Dual_Remote_Controllers_Mode
http://wiki.dji.com/en/index.php/Inspire_1_Pro-Dual_Remote_Controllers_Mode
http://www.dronestagr.am/2017-international-drone-photography-contest
http://www.dronestagr.am/2017-international-drone-photography-contest

BIBLIOGRAPHY

[Flynixie, 2018] Flynixie. The first wearable camera that can fly — flynixie. http:

//flynixie.com, 2018.

[Forster et al., 2014] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. Svo:
Fast semi-direct monocular visual odometry. In ICRA, 2014.

[Forster et al., 2017] Christian Forster, Zichao Zhang, Michael Gassner, Manuel
Werlberger, and Davide Scaramuzza. Svo: Semidirect visual odometry for monoc-
ular and multicamera systems. IEEE Transactions on Robotics, 2017.

[Fuentes-Pacheco et al., 2012] Jorge Fuentes-Pacheco, José Rúız Ascencio, and
Juan M. Rendón-Mancha. Visual simultaneous localization and mapping: a survey.
Artificial Intelligence Review, 2012.

[Furukawa et al., 2010] Yasutaka Furukawa, Brian Curless, Steven M Seitz, and
Richard Szeliski. Towards internet-scale multi-view stereo. In CVPR, 2010.

[Galyean, 1995] Tinsley A Galyean. Guided navigation of virtual environments. In
I3D, 1995.

[Gao et al., 2003] Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei
Cheng. Complete solution classification for the perspective-three-point problem.
TPAMI, 2003.

[Gebhardt et al., 2016] Christoph Gebhardt, Benjamin Hepp, Tobias Nägeli, Stefan
Stevšić, and Otmar Hilliges. Airways: Optimization-based planning of quadrotor
trajectories according to high-level user goals. In ACM SIGCHI, 2016.

[Geiger et al., 2013] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Ur-
tasun. Vision meets robotics: The kitti dataset. IJRR, 2013.

[Gernsheim and Gernsheim, 1969] Helmut Gernsheim and Alison Gernsheim. The
history of photography: from the camera obscura to the beginning of the modern
era. New York: McGraw-Hill, 1969.

[Gleicher and Witkin, 1992] Michael Gleicher and Andrew Witkin. Through-the-lens
camera control. In ACM SIGGRAPH, 1992.

[Godard et al., 2017] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow.
Unsupervised monocular depth estimation with left-right consistency. In CVPR,
2017.

[Hachet et al., 2008] Martin Hachet, Fabrice Decle, Sebastian Knodel, and Pascal
Guitton. Navidget for easy 3D camera positioning from 2D inputs. 3DUI, 2008.

91

http://flynixie.com
http://flynixie.com

BIBLIOGRAPHY

[Hainsworth, 2001] David W Hainsworth. Teleoperation user interfaces for mining
robotics. Autonomous Robots, 2001.

[Hanson and Wernert, 1997] Andrew J Hanson and Eric A Wernert. Constrained 3D
navigation with 2D controllers. In Visualization, 1997.

[Hornung et al., 2013] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill
Stachniss, and Wolfram Burgard. Octomap: An efficient probabilistic 3d map-
ping framework based on octrees. Autonomous robots, 2013.

[Joubert et al., 2015] Niels Joubert, Mike Roberts, Anh Truong, Floraine
Berthouzoz, and Pat Hanrahan. An interactive tool for designing quadrotor camera
shots. ACM TOG, 2015.

[Kalal et al., 2012] Zdenek Kalal, Krystian Mikolajczyk, Jiri Matas, et al. Tracking-
learning-detection. TPAMI, 2012.

[Karaman and Frazzoli, 2010] Sertac Karaman and Emilio Frazzoli. Incremental
sampling-based algorithms for optimal motion planning. RSS, 2010.

[Karrer et al., 2008] Thorsten Karrer, Malte Weiss, Eric Lee, and Jan Borchers.
Dragon: a direct manipulation interface for frame-accurate in-scene video navi-
gation. In ACM SIGCHI, 2008.

[Karsch et al., 2014] Kevin Karsch, Ce Liu, and Sing Bing Kang. Depth transfer:
Depth extraction from video using non-parametric sampling. TPAMI, 2014.

[Khan et al., 2005] Azam Khan, Ben Komalo, Jos Stam, George Fitzmaurice, and
Gordon Kurtenbach. Hovercam: interactive 3d navigation for proximal object
inspection. In I3D, 2005.

[Khatib, 1985] Oussama Khatib. Real-time obstacle avoidance for manipulators and
mobile robots. In ICRA, 1985.

[Klein and Murray, 2007] Georg Klein and David Murray. Parallel tracking and map-
ping for small ar workspaces. In ISMAR, 2007.

[Kukelova and Pajdla, 2007a] Zuzana Kukelova and Tomas Pajdla. A minimal solu-
tion to the autocalibration of radial distortion. In CVPR, 2007.

[Kukelova and Pajdla, 2007b] Zuzana Kukelova and Tomas Pajdla. Two minimal
problems for cameras with radial distortion. In ICCV, 2007.

[Kyung et al., 1996] Min-Ho Kyung, Myung-Soo Kim, and Sung Je Hong. A new
approach to through-the-lens camera control. GMIP, 1996.

92

BIBLIOGRAPHY

[Laina et al., 2016] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico
Tombari, and Nassir Navab. Deeper depth prediction with fully convolutional
residual networks. In 3D Vision, 2016.

[Lepetit et al., 2009] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.
EPnP: an accurate O(n) solution to the PnP problem. IJCV, 2009.

[Li and Snavely, 2018] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In CVPR, 2018.

[Li et al., 2012] Shiqi Li, Chi Xu, and Ming Xie. A robust O(n) solution to the
perspective-n-point problem. TPAMI, 2012.

[Li et al., 2015] Bo Li, Chunhua Shen, Yuchao Dai, Anton Van Den Hengel, and
Mingyi He. Depth and surface normal estimation from monocular images using
regression on deep features and hierarchical crfs. In CVPR, 2015.

[Lily-Next-Gen, 2017] Lily-Next-Gen. Flying robots get your lily robot. http://

www.lily.camera/, 2017.

[Lino and Christie, 2015] Christophe Lino and Marc Christie. Intuitive and efficient
camera control with the toric space. ACM TOG, 2015.

[Liu et al., 2014] Miaomiao Liu, Mathieu Salzmann, and Xuming He. Discrete-
continuous depth estimation from a single image. In CVPR, 2014.

[Liu et al., 2015] Fayao Liu, Chunhua Shen, and Guosheng Lin. Deep convolutional
neural fields for depth estimation from a single image. In CVPR, 2015.

[Liu et al., 2016] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid. Learning
depth from single monocular images using deep convolutional neural fields. TPAMI,
2016.

[Mackinlay et al., 1990] Jock D Mackinlay, Stuart K Card, and George G Robertson.
Rapid controlled movement through a virtual 3d workspace. In ACM SIGGRAPH,
1990.

[Marder-Eppstein, 2016] Eitan Marder-Eppstein. Project tango. In ACM SIG-
GRAPH Real-Time Live!, 2016.

[McGovern, 1991] Douglas E McGovern. Experience and results in teleoperation of
land vehicles. In Pictorial Communication in Virtual and Real Environments, 1991.

[Mei et al., 2010] Christopher Mei, Gabe Sibley, and Paul Newman. Closing loops
without places. In IROS, 2010.

93

http://www.lily.camera/
http://www.lily.camera/

BIBLIOGRAPHY

[Merckel and Nishida, 2008] Loic Merckel and Toyoaki Nishida. Evaluation of a
method to solve the perspective-two-point problem using a three-axis orientation
sensor. In CIT, 2008.

[Mur-Artal et al., 2015] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D
Tardos. ORB-SLAM: a versatile and accurate monocular slam system. T-RO,
2015.

[Nebehay and Pflugfelder, 2015] Georg Nebehay and Roman Pflugfelder. Clustering
of static-adaptive correspondences for deformable object tracking. In CVPR, 2015.

[Newcombe et al., 2011] Richard A Newcombe, Steven J Lovegrove, and Andrew J
Davison. Dtam: Dense tracking and mapping in real-time. In ICCV, 2011.

[Nicholas Greene and Roy, 2017] W Nicholas Greene and Nicholas Roy. FLaME: Fast
Lightweight Mesh Estimation Using Variational Smoothing on Delaunay Graphs.
In ICCV, 2017.

[Nistér, 2004] David Nistér. An efficient solution to the five-point relative pose prob-
lem. TPAMI, 2004.

[Pizzoli et al., 2014] Matia Pizzoli, Christian Forster, and Davide Scaramuzza. RE-
MODE: Probabilistic, monocular dense reconstruction in real time. In ICRA, 2014.

[Reisman et al., 2009] Jason L Reisman, Philip L Davidson, and Jefferson Y Han. A
screen-space formulation for 2d and 3d direct manipulation. In UIST, 2009.

[Rockafellar and Wets, 2009] R Tyrrell Rockafellar and Roger J-B Wets. Variational
analysis, volume 317. Springer Science & Business Media, 2009.

[Ross et al., 2013] Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya
Shankar, Andreas Wendel, Debadeepta Dey, J Andrew Bagnell, and Martial
Hebert. Learning monocular reactive uav control in cluttered natural environ-
ments. In ICRA, 2013.

[Sadeghi and Levine, 2017] Fereshteh Sadeghi and Sergey Levine. (CAD)2RL: Real
single-image flight without a single real image. In RSS, 2017.

[Satou et al., 1999] Takashi Satou, Haruhiko Kojima, Akihito Akutsu, and Yoshi-
nobu Tonomura. Cybercoaster: Polygonal line shaped slider interface to spatio-
temporal media. In ACM Multimedia, 1999.

[Saxena et al., 2009] Ashutosh Saxena, Min Sun, and Andrew Y Ng. Make3d: Learn-
ing 3d scene structure from a single still image. TPAMI, 2009.

94

BIBLIOGRAPHY

[Schonberger and Frahm, 2016] Johannes L Schonberger and Jan-Michael Frahm.
Structure-from-motion revisited. In CVPR, 2016.

[Schöps et al., 2017] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani,
Torsten Sattler, Konrad Schindler, Marc Pollefeys, and Andreas Geiger. A multi-
view stereo benchmark with high-resolution images and multi-camera videos. In
CVPR, 2017.

[Siek et al., 2005] Katie A Siek, Yvonne Rogers, and Kay H Connelly. Fat finger wor-
ries: how older and younger users physically interact with PDAs. In INTERACT,
2005.

[Silberman and Fergus, 2011] Nathan Silberman and Rob Fergus. Indoor scene seg-
mentation using a structured light sensor. In Computer Vision Workshops (ICCV
Workshops), 2011.

[Skydio-R1, 2018] Skydio-R1. Skydio the self-flying camera has arrived. https:

//www.skydio.com/, 2018.

[Stewénius et al., 2008] Henrik Stewénius, David Nistér, Fredrik Kahl, and Frederik
Schaffalitzky. A minimal solution for relative pose with unknown focal length.
Image and Vision Computing, 2008.

[Strasdat et al., 2011] Hauke Strasdat, Andrew J Davison, JM Mart̀ınez Montiel, and
Kurt Konolige. Double window optimisation for constant time visual slam. In
ICCV, 2011.

[Tang and Tan, 2018] Chengzhou Tang and Ping Tan. Ba-net: Dense bundle adjust-
ment network. arXiv preprint arXiv:1806.04807, 2018.

[Triggs, 1999] Bill Triggs. Camera pose and calibration from 4 or 5 known 3d points.
In ICCV, 1999.

[Umeyama, 1991] Shinji Umeyama. Least-squares estimation of transformation pa-
rameters between two point patterns. TPAMI, 1991.

[Urban et al., 2016] Steffen Urban, Jens Leitloff, and Stefan Hinz. MLPnP-a real-
time maximum likelihood solution to the perspective-n-point Problem. ISPRS
journal of photogrammetry and remote sensing, 2016.

[Walther-Franks et al., 2011] Benjamin Walther-Franks, Marc Herrlich, and Rainer
Malaka. A multi-touch system for 3D modelling and animation. In International
Symposium on Smart Graphics, 2011.

95

https://www.skydio.com/
https://www.skydio.com/

BIBLIOGRAPHY

[Ware and Osborne, 1990] Colin Ware and Steven Osborne. Exploration and virtual
camera control in virtual three dimensional environments. ACM SIGGRAPH, 1990.

[Xu et al., 2017] Dan Xu, Elisa Ricci, Wanli Ouyang, Xiaogang Wang, and Nicu
Sebe. Multi-scale continuous crfs as sequential deep networks for monocular depth
estimation. In CVPR, 2017.

[Zeleznik and Forsberg, 1999] Robert Zeleznik and Andrew Forsberg. UniCam2D
gestural camera controls for 3D environments. In I3D, 1999.

[Zheng et al., 2013] Yinqiang Zheng, Yubin Kuang, Shigeki Sugimoto, Kalle Astrom,
and Masatoshi Okutomi. Revisiting the pnp problem: a fast, general and optimal
solution. In ICCV, 2013.

[Zhou et al., 2017] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe.
Unsupervised learning of depth and ego-motion from video. In CVPR, 2017.

96

	List of Figures
	List of Tables
	Introduction
	User Interfaces for Photo-taking
	Flying Camera Photography
	User Interactions for POV Navigation
	Device-centric Techniques
	View-centric Techniques

	Outline

	System Design
	User Interaction
	Interview Study
	Explore-and-Compose

	System Functions
	Object of Interest Selection
	POV Sampling
	POV Restore
	Direct View Manipulation

	Discussion
	Problem in Camera Localization
	Problem in Object Tracking
	Problem in Photo Composition
	Problem in Collision Avoidance

	POV Selection for Photo Composition
	Two Objects Composition
	Related Work
	Problem Formulation
	P2P Solution in Closed Form
	Evaluation
	Discussion

	Three or More Objects Composition
	Summary

	Depth Perception for Collision Avoidance
	Depth Map Construction
	Related Work
	Problem Formulation
	Depth Map Construction Pipeline
	Evaluation
	Discussion

	Summary

	System Implementation
	System Hardware and Software Setup
	Hardware
	Software

	System Components
	Gesture Recognition
	Camera Localization
	Object Tracking
	Photo Composition
	Trajectory Planning
	Collision Avoidance
	Drone Control

	System Evaluation
	Experimental Setup
	Interaction Design Evaluation
	Evaluation of POV Exploration
	Evaluation of Visual Composition
	Experimental Design
	Results

	System Performance Evaluation
	Evaluation of Photo-taking - Single Object of Interest
	Evaluation of Photo-taking - Multiple Objects of Interest
	Experimental Design
	Results

	Discussion

	Conclusion
	Bibliography

