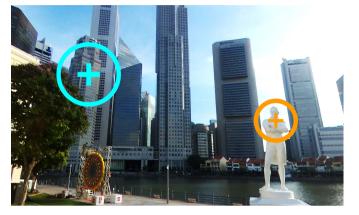
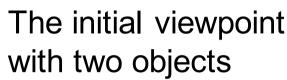


Solving the Perspective-2-Point Problem for Flying-Camera Photo Composition

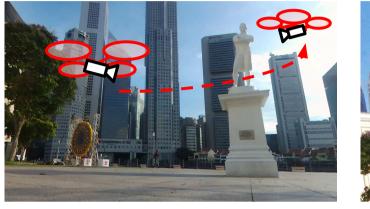
INTRODUCTION

Automatic viewpoint selection for flying-camera photo composition:





The user composes photo with gestures



The camera finds a desired viewpoint

Proposed solution:

- Formulate the under-determined P2P as a constrained nonlinear optimization
- Solve the constrained nonlinear optimization in *closed form*

CONSTRAINED NONLINEAR OPTIMIZAT

Given:

- \mathbf{q}_{i}^{VV} : estimated object centroid positions in the world frame F_W .
- \mathbf{p}_{i}^{I} : desired composition positions in the image frame F_I .
- ϵ_i : estimated collisionfree distances to the objects.
- \mathbf{t}_{0}^{W} : the camera's initial position in F_W .
- K: the camera's intrinsic matrix.

$\underset{\mathbf{R}_{C}^{W}, \mathbf{t}_{C}^{W}}{\operatorname{argmin}} \ \mathbf{t}_{C}^{W} - \mathbf{t}$
$\lambda_j \mathbf{p}_j^I = \mathbf{K} \big(\mathbf{R}_W^C \big)$
$\left\ \mathbf{t}_{\mathcal{C}}^{W}-\mathbf{q}_{j}^{W}\right\ \geq$
-

Ziquan Lan, David Hsu, Gim Hee Lee National University of Singapore

P2P SOLUTION IN CLOSED FORM

- Construct an auxiliary frame F_A : one axis passes through \mathbf{q}_1^W and \mathbf{q}_2^W . $\mathbf{q}_{1}^{A} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T}, \mathbf{q}_{2}^{A} = \begin{bmatrix} \|\mathbf{q}_{1}^{W} - \mathbf{q}_{2}^{W}\| & 0 & 0 \end{bmatrix}^{T}.$
- **Reformulate the equality constraints Eq.** (2) using F_A : $\lambda_i \mathbf{p}_i^I = \mathbf{K} (\mathbf{R}_A^C \mathbf{q}_i^A + \mathbf{t}_A^C).$
 - Rewrite Eq. (4) into

$$\mathbf{A} \mathbf{w} = \mathbf{0}_{4 \times 1},$$

- A is a 4x6 matrix from \mathbf{K}^{-1} , \mathbf{p}_{i}^{I} and $\|\mathbf{q}_{1}^{W} \mathbf{q}_{2}^{W}\|$,
- $\mathbf{w} = \begin{vmatrix} \mathbf{c_{1_A^C}} \\ \mathbf{t_A^C} \end{vmatrix}$, where $\mathbf{c_{1_A^C}}$ is the 1st column of $\mathbf{R}_A^C = \begin{bmatrix} \mathbf{c_{1_A^C}} & \mathbf{c_{2_A^C}} \\ \mathbf{t_A^C} \end{bmatrix}$,
- Null space of A gives $\mathbf{w} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2$, (2 parameters: α_1 and α_2),
- Since $\|\mathbf{c_1}_A^C\| = 1$, both $\mathbf{c_1}_A^C$ and \mathbf{t}_A^C are parameterized with 1 parameter θ .

Reformulate the inequality constraints Eq. (3) using F_A : $\left\|\mathbf{t}_{C}^{A}-\mathbf{q}_{i}^{A}\right\|\geq\epsilon_{i},$

- $\mathbf{t}_C^A = -\begin{bmatrix} \mathbf{c_1}_A^C & \mathbf{c_2}_A^C & \mathbf{c_3}_A^C \end{bmatrix}^T \mathbf{t}_A^C = \begin{bmatrix} x & y & z \end{bmatrix}^T$,
- Since $y^2 + z^2 = \|\mathbf{t}_A^C\|^2 x^2$, we introduce 1 more parameter ϕ so that y and z are parameterized with θ and ϕ .
- Plugging t_{C}^{A} in Eq. (5), we can solve for eight boundary solutions.

Reformulate the objective function Eq. (1) using F_A :

- $\underset{\mathbf{R}_{C}^{W}, \mathbf{t}_{C}^{W}}{\operatorname{argmin}} \|\mathbf{t}_{C}^{A} \mathbf{t}_{0}^{A}\|^{2}$
- Note the objective function $obj = \|\mathbf{t}_{c}^{A} \mathbf{t}_{0}^{A}\|^{2}$ is parameterized using θ and ϕ .
- Minimize *obj* with respect to ϕ and θ : • $\frac{\partial obj}{\partial d} = \frac{\partial obj}{\partial d} = 0$ yields eight general solutions.
- **Obtain the global optimum** $t^*{}^A_C$, hence $t^*{}^W_C$, by enumeration, then the unique $\mathbf{R}^*{}^W_C$.

The final photo with desired composition

$$j = 1,$$

(1)

(3)

$$\mathbf{t}_0^W \|^2$$

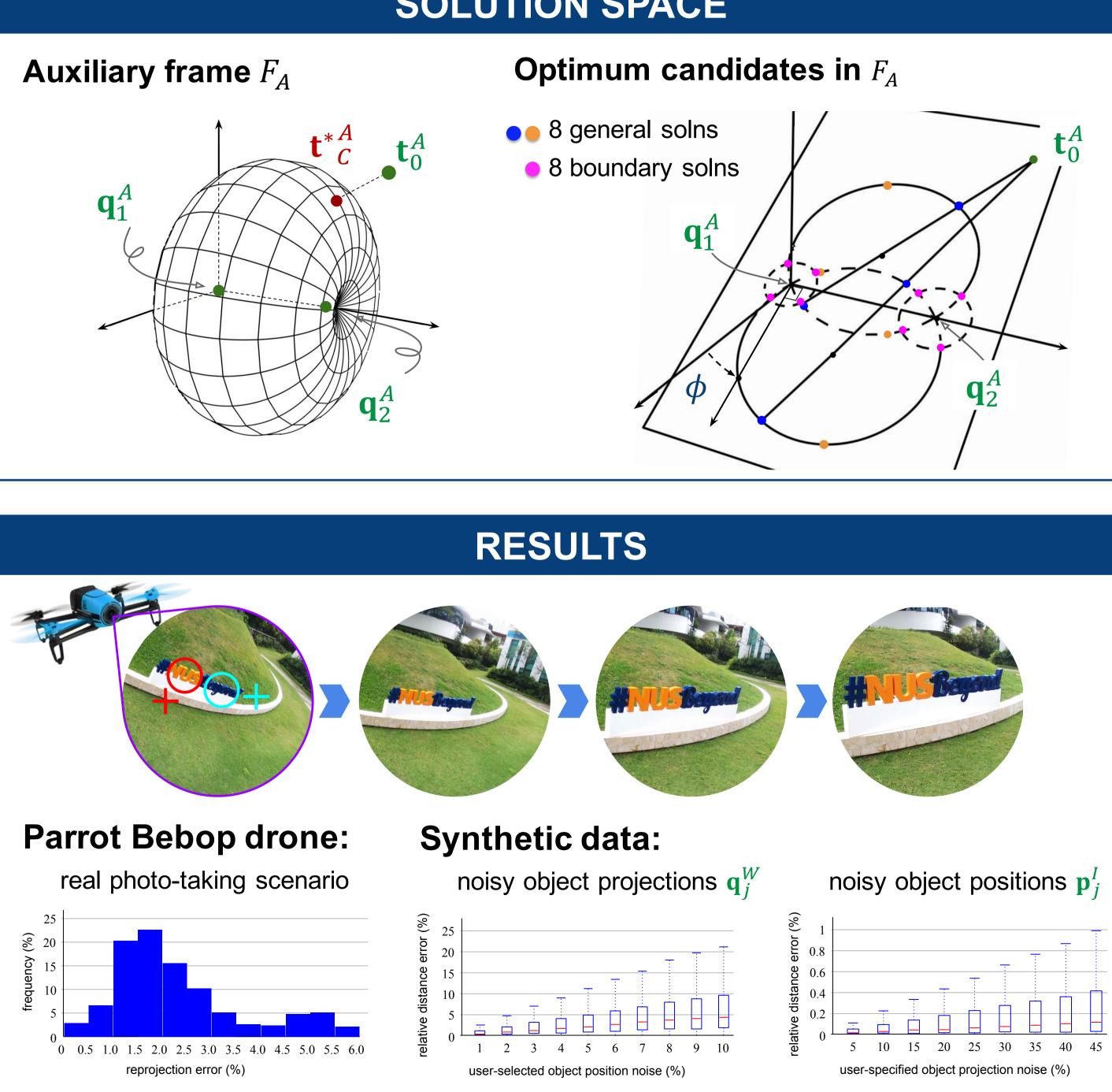
 $\mathbf{q}_j^W + \mathbf{t}_W^C \Big), \quad (2)$

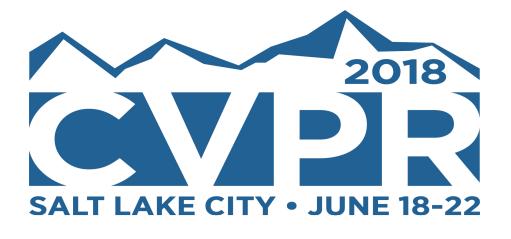
 ϵ_j .

(4)

(5)

(6)





SOLUTION SPACE

